Home
Class 12
MATHS
If (asectheta;btantheta) and (asecphi; b...

If `(asectheta;btantheta)` and `(asecphi; btanphi)` are the ends of the focal chord of `x^2/a^2-y^2/b^2=1` then prove that `tan(x/a)tan(phi/2)=(1-e)/(1+e)`

Text Solution

Verified by Experts

The equation of the chord joining `(a sec theta, b tan theta)` and `(a sec phi, b tan phi)` is
`(x)/(a)cos((theta-phi)/(2))-(y)/(b)sin((theta+phi)/(2))=cos((theta+phi)/(2))`
This passes through (ae, 0). Therefore,
`ecos((theta-phi)/(2))=cos((theta+phi)/(2))`
`"or "e=(cos((theta+phi)/(2)))/(cos((theta-phi)/(2)))`
`"or "(e-1)/(e+1)=(cos((theta+phi)/(2))-cos((theta-phi)/(2)))/(cos((theta+phi)/(2))+cos((theta+phi)/(2)))`
`"or "(e-1)/(e+1)=-tan.(theta)/(2)tan.(phi)/(2)`
`"or "tan.(theta)/(2)tan.(phi)/(2)=(1-e)/(1+e)`
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    CENGAGE|Exercise Exercise 7.1|3 Videos
  • HYPERBOLA

    CENGAGE|Exercise Exercise 7.2|12 Videos
  • HIGHT AND DISTANCE

    CENGAGE|Exercise JEE Previous Year|3 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Question Bank|21 Videos

Similar Questions

Explore conceptually related problems

If (asectheta, btantheta) and (asecphi, btanphi) be two coordinate of the ends of a focal chord passing through (ae,0) of x^2/a^2-y^2/b^2=1 then tan(theta/2)tan(phi/2) equals to

If x=asectheta,y=btantheta, then the value of x^(2)/a^(2)-y^(2)/b^(2)= …….. .

The locus of mid-points of a focal chord of the ellipse x^2/a^2+y^2/b^2=1

Prove that 2tan^(-1)((2)/(3))=tan^(-1)((12)/(5))

If t_1a n dt_2 are the ends of a focal chord of the parabola y^2=4a x , then prove that the roots of the equation t_1x^2+a x+t_2=0 are real.

Solve (tan3x-tan2x)/(1+tan3xtan2x )=1

Prove that cos2A=(1-tan^2 A)/(1+tan^2 A)

If the normal at P(asectheta,btantheta) to the hyperbola x^2/a^2-y^2/b^2=1 meets the transverse axis in G then minimum length of PG is

if (x)/(2)=(cosA)/(cosB) then prove that (x tan A+y tan B)/(x+y)=tan""(A+B)/(2)