Home
Class 12
MATHS
If the normal at a pont P to the hyperbo...

If the normal at a pont `P` to the hyperbola `x^2/a^2 - y^2/b^2 =1` meets the x-axis at `G`, show that the `SG = eSP.S` being the focus of the hyperbola.

Text Solution

Verified by Experts

Equation of normal at point `P(x_(1),y_(1))` is
`(a^(2)x)/(x_(1))+(b^(2)y)/(y_(1))=a^(2)e^(2)`
It meets x-axis at `G(e^(2)x_(1),0)`.

Now, GL is perpendicular to the asymptote `bx=ay=0`.
So, equation of GL is
`ax+by=ae^(2)x_(1)`
Solving this line with asymptote `bx-ay=0,` we get `x=x_(1)` for point L.
Thus, abscissa of P and L are the same.
Therefore, LP is parallel to conjugate axis.
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    CENGAGE|Exercise Exercise 7.1|3 Videos
  • HYPERBOLA

    CENGAGE|Exercise Exercise 7.2|12 Videos
  • HIGHT AND DISTANCE

    CENGAGE|Exercise JEE Previous Year|3 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Question Bank|21 Videos

Similar Questions

Explore conceptually related problems

If the normal at a point P to the hyperbola meets the transverse axis at G, and the value of SG/SP is 6, then the eccentricity of the hyperbola is (where S is focus of the hyperbola)

If the normal at P(asectheta,btantheta) to the hyperbola x^2/a^2-y^2/b^2=1 meets the transverse axis in G then minimum length of PG is

Let 'p' be the perpendicular distance from the centre C of the hyperbola x^2/a^2-y^2/b^2=1 to the tangent drawn at a point R on the hyperbola. If S & S' are the two foci of the hyperbola, then show that (RS + RS')^2 = 4 a^2(1+b^2/p^2) .

The vertices of the hyperbola 9x^2 - 16y^2 = 144

Let P(6,3) be a point on the hyperbola parabola x^2/a^2-y^2/b^2=1 If the normal at the point intersects the x-axis at (9,0), then the eccentricity of the hyperbola is

If the normal at P(theta) on the hyperbola (x^2)/(a^2)-(y^2)/(2a^2)=1 meets the transvers axis at G , then prove that A GdotA^(prime)G=a^2(e^4sec^2theta-1) , where Aa n dA ' are the vertices of the hyperbola.

If the normal at P to the rectangular hyperbola x^2-y^2=4 meets the axes at G and ga n dC is the center of the hyperbola, then (a) P G=P C (b) Pg=P C (c) P G-Pg (d) Gg=2P C

The tangent at P on the hyperbola (x^(2))/(a^(2)) -(y^(2))/(b^(2))=1 meets one of the asymptote in Q. Then the locus of the mid-point of PQ is

If P Q is a double ordinate of the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 such that O P Q is an equilateral triangle, O being the center of the hyperbola, then find the range of the eccentricity e of the hyperbola.

The tangent at a point P on the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 meets one of the directrix at Fdot If P F subtends an angle theta at the corresponding focus, then theta= pi/4 (b) pi/2 (c) (3pi)/4 (d) pi