Home
Class 12
MATHS
Find the set of values of parameter a so...

Find the set of values of parameter `a` so that the equation `(sin^(-1)x)^3+(cos^(-1)x)^3=api^3` has a solution.

Text Solution

Verified by Experts

`(sin^(-1) x)^(3) + (cos^(-1) x)^(3) = a pi^(3)`
`rArr (sin^(-1) x + cos^(-1) x) ((sin^(-1) x + cos^(-1)x)^(2) - 3 sin^(-1) x cos^(-1) x) = a pi^(3)`
`rArr (pi^(2))/(4) - 3 sin^(-1) x cos^(-1) x = 2 a pi^(2)`
`rArr sin^(-1) x ((pi)/(2) - sin^(-1) x) = (pi^(2))/(12) (1 -8a)`
`rArr (sin^(-1) x)^(2) - (pi)/(2) sin^(-1) x = -(pi^(2))/(12) (1 - 8a)`
`rArr (sin^(-1) x - (pi)/(4))^(2) = (pi^(2))/(12) (8a - 1) + (pi^(2))/(16)`
`= (pi^(2))/(48) (32a -1)`
Now, `sin^(-1) x in [-(pi)/(2), (pi)/(2)]`
`rArr - (3 pi)/(4) le sin^(-1) x - (pi)/(4) le (pi)/(4)`
`rArr 0 le (sin^(-1) x - (pi)/(4))^(2) le (9pi^(2))/(16)`
`rArr 0 le (pi^(2))/(48) (32a - 1) le (9pi^(2))/(16)`
`rArr 0 le 32 a - 1 le 27`
`rArr (1)/(32) le a le (7)/(8)`
Thus, the required set of value of `a` is `[(1)/(32), (7)/(8)]`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

The range of the values of p for which the equation sin cos^(-1) ( cos (tan^(-1) x)) = p has a solution is

If sin^(-1)x = 3 sin^(-1) alpha has a solution then :

The set of values of k for which the equation sin^(-1)x+cos^(-1)x +pi(|x|-2)=k pi possesses real solution is [a,b] then the value of a + b is

Find the values of p so that the equation 2cos^2x-(p+3)cosx+2(p-1)=0 has a real solution.

The value of x satisfying the equation cos^(-1)3x+sin^(-1)2x=pi is

The number of integer values of k for which the equation sin^(-1)x+tan^(-1)x=2k+1 has a solution is (a)1 (b) 2 (c) 3 (d) 4

Find the set of value of x for which the equation cos^(-1) x + cos^(-1) ((x)/(2) + (1)/(2) sqrt(3 -3x^(2))) = (pi)/(3) holds goods

The sum of all possible values of x satisfying the equation sin^(-1)(3x-4x^(3))+cos^(-1)(4x^(3)-3x)=(pi)/(2) is

Find the set of real value(s) of a for which the equation |2x+3|+|2x-3|=a x+6 has more than two solutions.

CENGAGE-INVERSE TRIGONOMETRIC FUNCTIONS-All Questions
  1. Find the domain for f(x)=sin^(-1)((1+x^2)/(2x))

    Text Solution

    |

  2. Find the range of f(x)=cot^(-1)(2x-x^2)dot

    Text Solution

    |

  3. Find the set of values of parameter a so that the equation (sin^(-1)x)...

    Text Solution

    |

  4. Solve the equation sqrt(|s in^(-1)|"cos"||+|cos^1|sinx||)=sin^(-1)|cos...

    Text Solution

    |

  5. Ifp > q >0a n dp r<-1<q r , then find the value of tan^(-1)(p-q)/(1+p ...

    Text Solution

    |

  6. tan^(-1)((1)/(4))+tan^(-1)((2)/(11))=

    Text Solution

    |

  7. Find the number of positive integral solution of the equation tan^(-1)...

    Text Solution

    |

  8. If tan^(-1)y=4tan^(-1)x(|x|<tanpi/8) , find y as an algebraic function...

    Text Solution

    |

  9. Find the sum cos e c^(-1)sqrt(10)+cos e c^(-1)sqrt(50)+cos e c^(-1)sqr...

    Text Solution

    |

  10. Let f(x)=sinx+cosx+tanx+sin^(-1)x+cos^(-1)x+tan^(-1)xdot Then find the...

    Text Solution

    |

  11. Find the principal value of the following: (i) cosec^(-1)(2) (ii) ta...

    Text Solution

    |

  12. Solver sin^(-1) x gt -1

    Text Solution

    |

  13. Solve cos^(-1)x >cos^(-1)x^2

    Text Solution

    |

  14. Solve for x if (cot^(-1)x)^2-3(cot^(-1)x)+2>0

    Text Solution

    |

  15. Find the value of x for which the following expression are defined (...

    Text Solution

    |

  16. If [cot^(-1)x]+[cos^(-1)x]=0 , where [] denotes the greatest integer f...

    Text Solution

    |

  17. Find the value of sin^(-1)(2^x) (ii) cos^(-1)sqrt(x^2-x+1) tan^(-1)(...

    Text Solution

    |

  18. Find the range of f(x)=|3tan^(-1)x-cos^(-1)(0)|-cos^(-1)(-1)dot

    Text Solution

    |

  19. Find the value of x for which sec^(-1)xsin^(-1)x=pi/2dot

    Text Solution

    |

  20. If sin^(-1)(x^2+2x+2)+tan^(-1)(x^2-3x-k^2)>pi/2, then find the values ...

    Text Solution

    |