Home
Class 12
MATHS
Solve the equation sqrt(|s in^(-1)|"cos"...

Solve the equation `sqrt(|s in^(-1)|"cos"||+|cos^1|sinx||)=sin^(-1)|cosx|-cos^(-1)|sinx|,(-pi)/2lt=xlt=pi/2dot`

Text Solution

Verified by Experts

Given `sqrt(|sin^(-1)| cos x || + | cos^(-1)| sin x||) = sin^(-1) (|cos x|) - cos^(-1)|sin x|`
When `x in [0, (pi)/(2)], 0 le (pi)/(2) - x le (pi)/(2)`, we have
`sqrt(sin^(-1) sin ((pi)/(2) - x) + cos^(-1) cos((pi)/(2) - x)) = sin^(-1) (sin((pi)/(2) - x)) - cos^(-1) (cos ((pi)/(2) - x))`
or `sqrt(2 ((pi)/(2) -- x)) = (pi)/(2) - x - (pi)/(2) + x`
or `x = (pi)/(2)`
When `x in [-(pi)/(2), 0], (pi)/(2) le (pi)/(2) - x le pi`, we have
`sqrt(sin^(-1) (sin((pi)/(2) -x)) + cos^(-1) (- cos((pi)/(2) - x))) = sin^(-1) (sin((pi)/(2) - x)) - cos^(-1) (-cos ((pi)/(2) - x))`
`sqrt(pi - ((pi)/(2) - x) + pi - cos^(-1) (cos ((pi)/(2) - x))) `
`= pi - ((pi)/(2) - x) - pi + cos^(-1) (cos ((pi)/(2) - x))`
`rArr sqrt((pi)/(2) + x + pi - ((pi)/(2) - x)) = (pi)/(2) + x - pi + (pi)/(2) - x`
`rArr sqrt(pi + 2x) = 0`
`x = -(pi)/(2)`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Solve the equation sqrt(|sin^(-1)|"cosx"||+|cos^(-1)|sinx||)=sin^(-1)|cosx|-cos^(-1)|sinx|,(-pi)/2lt=xlt=pi/2dot

Solve the equation (sqrt(3))/2sinx-cosx=cos^2x

Solve the equation sin^(-1)6 x+sin^(-1)6sqrt(3)x=(-pi)/2dot

Solve the following in equality sin^(-1)xlt=cos^(-1)xdot

Solve the equation 2(cos x+cos2x)+sin2x(1+2cos x)=2sinx for (-pilt=xlt=pi)

The area bounded by the curve y=|cos^(-1)(sinx)|-|sin^(-1)(cosx)| and axis from (3pi)/(2)lex le 2pi

Prove that: y=int_(1/8)^(sin^2x)sin^(-1)sqrt(t)dt+int_(1/8)^(cos^2x)cos^(-1)sqrt(t) ,where 0lt=xlt=pi/2 , is the equation of a straight line parallel to the x-axis. Find the equation.

int_(0)^(pi)(cosx)/(1+sinx)dx=

Solve the equation: cos^2[pi/4(sinx+sqrt(2)cos^2x)]-tan^2[x+pi/4tan^2x]=1

The value of sin^(-1)("cos"(cos^(-1)(cosx)+sin^(-1)(sinx))), where x in (pi/2,pi) , is equal to (a) pi/2 (b) -pi (c) pi (d) -pi/2

CENGAGE-INVERSE TRIGONOMETRIC FUNCTIONS-All Questions
  1. Find the range of f(x)=cot^(-1)(2x-x^2)dot

    Text Solution

    |

  2. Find the set of values of parameter a so that the equation (sin^(-1)x)...

    Text Solution

    |

  3. Solve the equation sqrt(|s in^(-1)|"cos"||+|cos^1|sinx||)=sin^(-1)|cos...

    Text Solution

    |

  4. Ifp > q >0a n dp r<-1<q r , then find the value of tan^(-1)(p-q)/(1+p ...

    Text Solution

    |

  5. tan^(-1)((1)/(4))+tan^(-1)((2)/(11))=

    Text Solution

    |

  6. Find the number of positive integral solution of the equation tan^(-1)...

    Text Solution

    |

  7. If tan^(-1)y=4tan^(-1)x(|x|<tanpi/8) , find y as an algebraic function...

    Text Solution

    |

  8. Find the sum cos e c^(-1)sqrt(10)+cos e c^(-1)sqrt(50)+cos e c^(-1)sqr...

    Text Solution

    |

  9. Let f(x)=sinx+cosx+tanx+sin^(-1)x+cos^(-1)x+tan^(-1)xdot Then find the...

    Text Solution

    |

  10. Find the principal value of the following: (i) cosec^(-1)(2) (ii) ta...

    Text Solution

    |

  11. Solver sin^(-1) x gt -1

    Text Solution

    |

  12. Solve cos^(-1)x >cos^(-1)x^2

    Text Solution

    |

  13. Solve for x if (cot^(-1)x)^2-3(cot^(-1)x)+2>0

    Text Solution

    |

  14. Find the value of x for which the following expression are defined (...

    Text Solution

    |

  15. If [cot^(-1)x]+[cos^(-1)x]=0 , where [] denotes the greatest integer f...

    Text Solution

    |

  16. Find the value of sin^(-1)(2^x) (ii) cos^(-1)sqrt(x^2-x+1) tan^(-1)(...

    Text Solution

    |

  17. Find the range of f(x)=|3tan^(-1)x-cos^(-1)(0)|-cos^(-1)(-1)dot

    Text Solution

    |

  18. Find the value of x for which sec^(-1)xsin^(-1)x=pi/2dot

    Text Solution

    |

  19. If sin^(-1)(x^2+2x+2)+tan^(-1)(x^2-3x-k^2)>pi/2, then find the values ...

    Text Solution

    |

  20. If cos^(-1)lambdacos^(-1)mu+cos^(-1)gamma=3pi, then find the value of ...

    Text Solution

    |