Home
Class 12
MATHS
Prove that 3 tan^(-1) x= {(tan^(-1) ((...

Prove that
`3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " -(1)/(sqrt3) lt x lt (1)/(sqrt3)),(pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x gt (1)/(sqrt3)),(-pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x lt - (1)/(sqrt3)):}`

Text Solution

Verified by Experts

Let `x = tan theta`, where `theta in (-pi//2, pi//2)`
`:. Tan^(-1). (3 x -x^(3))/(1 - 3x^(2)) = tan^(-1).(3 tan theta - tan^(3) theta)/(1 -3 tan^(2) theta)`
`= tan^(-1)(tan 3 theta), " where " 3 theta in (-3pi//2, 3 pi//2)`
`:. Tan^(-1).(3x - x^(3))/(1 - 3x^(2)) = {(3 theta,"if "-(pi)/(2) lt 3 theta lt (pi)/(2)),(3 theta - pi,"if " (pi)/(2) lt 3 theta lt (3pi)/(2)),(3 theta + pi,"if " -(3pi)/(2) lt 3 theta lt -(pi)/(2)):}`
Now if `-(pi)/(2) lt 3 theta lt (pi)/(2)`
`-(pi)/(2) lt 3 tan^(-1) x lt (pi)/(2)`
`rArr -(pi)/(6) lt tan^(-1) x lt (pi)/(6)`
`rArr -(1)/(sqrt3) lt x lt (1)/(sqrt3)`
Similarly, from `(pi)/(2) lt 3 theta lt (3pi)/(2)`, we get `x gt (1)/(sqrt3)`
And from `-(3pi)/(2) lt 3 theta lt -(pi)/(2)`, we get `x lt -(1)/(sqrt3)`
Thus, tan^(-1).(3x -x^(3))/(1 - 3x^(2)) = {(3 tan^(-1) x,"if " -(1)/(sqrt3) lt x lt (1)/(sqrt3)),(3 tan^(-1) x - pi," if " (1)/(sqrt3) lt x lt oo),(3 tan^(-1) x + pi,"if " -oo lt x lt -(1)/(sqrt3)):}`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

y = tan^(-1)((3x-x^(3))/(1-3x^(2))), find dy/dx.

Find (dy)/(dx) in the following : y = tan^(-1)((3x-x^(3))/(1-3x^(2))), -(1)/(sqrt(3)) lt x lt (1)/(sqrt(3)) .

Prove that tan^(-1)x+tan^(-1)""(2x)/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2)))absxlt(1)/(sqrt(3)).

Answer the equation: int tan^(-1)((3x-x^(3))/(1-3x^(2)))dx

Solve : tan ^(-1) 2x + tan ^(-1) 3x = pi/4

Solve the equation tan^(-1)2x+tan^(-1)3x=pi/4

Draw the graph of y=(3x-x^(3))/(1-3x^(2)) and hence the graph of y=tan^(-1).(3x-x^(3))/(1-3x^(2)) .

Solve : tan^(-1) 3x+tan^(-1) 4x = tan^(-1)(1/x), 12 x^(2) lt 1 , x!= 0

CENGAGE-INVERSE TRIGONOMETRIC FUNCTIONS-All Questions
  1. Find the value of 4tan^(-1)1/5-tan^(-1)1/(70)+tan^(-1)1/(99)

    Text Solution

    |

  2. If (x-1)(x^2+1)>0 , then find the value of sin(1/2tan^(-1)(2x)/(1-x^2)...

    Text Solution

    |

  3. Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if ...

    Text Solution

    |

  4. Solve sin^(-1)x+sin^(-1)2x=pi/3dot

    Text Solution

    |

  5. Solve : cos^(-1)(1/2x^2+sqrt(1-x^2)1=(x^2)/4)=cos^(-1)x/2-cos^(-1)xdot

    Text Solution

    |

  6. If x in (0,pi/2), then show that cos^(-1)(7/2(1+cos2x)+sqrt((sin^2x-48...

    Text Solution

    |

  7. Which of the following angles is greater? theta1=sin^(-1)+sin^(-1)1/3o...

    Text Solution

    |

  8. Find the value (lim)(nvecoo)sum(k=2)^n((1+sqrt((k-1)k(k+1)(k+2)))/(k(k...

    Text Solution

    |

  9. If f(x)=sin^(-1)x then prove that ("lim")(nvec1/2),f(3x-4x^3)=pi-3("li...

    Text Solution

    |

  10. Solve sin^(-1)x-cos^(-1)x=sin^(-1)(3x-2)

    Text Solution

    |

  11. sin{2cos^(-1)((-3)/(5))}=

    Text Solution

    |

  12. If sin^(-1)((4x)/(x^2+4))+2tan^(-1)(-x/2) is independent of x , find t...

    Text Solution

    |

  13. If cos^(-1)(6x)/(1+9x^2)=-pi/2+tan^(-1)3x , then find the value ofxdot

    Text Solution

    |

  14. Find the value of 2cos^(-1)3/(sqrt(13))+cot^(-1)(16)/(63)+1/2cos^(-1)7...

    Text Solution

    |

  15. Find the principal value of (a) cosec^(-1) (-1) (b) cot^(-1) (-(1)/(s...

    Text Solution

    |

  16. Solves cos^(-1) x lt 2

    Text Solution

    |

  17. Find the possible values of sin^(-1) (1 - x) + cos^(-1) sqrt(x -2)

    Text Solution

    |

  18. Find the real values of x for which the function f(x) = cos^(-1) sqrt(...

    Text Solution

    |

  19. Find the smallest and the largest values of tan^(-1) ((1 - x)/(1 + x))...

    Text Solution

    |

  20. Find the value of x for which sin^(-1) (cos^(-1) x) lt 1 and cos^(-1) ...

    Text Solution

    |