Home
Class 12
MATHS
The solution of the inequality (log)(1/2...

The solution of the inequality `(log)_(1/2)(sin)_(1/2)sin^(-1)x >(log)_(1//2)cos^(-1)x` is `x in [(0,1)/(sqrt(2))]` (b) `x in [1/(sqrt(2)),1]` `x in ((0,1)/(sqrt(2)))` (d) none of these

A

`x in [0, (pi)/(sqrt2)]`

B

`x in ((1)/(sqrt2), 1]`

C

`x in (0, (1)/(sqrt2))`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

`"log"_(1//2) sin^(-1) x gt "log"_(1//2) cos^(-1) x`
`rArr cos^(-1) x gt sin^(-1) x, 0 lt x lt 1`
`rArr cos^(-1) x gt (pi)/(2) - cos^(-1) x, 0 lt x lt 1`
`rArr cos^(-1) x gt (pi)//(4), 0 lt x lt 1`
`rArr 0 lt x lt (1)/(sqrt2)`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

The solution of the inequality (log)_(1/2sin^(-1)x >(log)_(1//2)cos^(-1)x is x in [(0,1)/(sqrt(2))] (b) x in [1/(sqrt(2)),1] x in ((0,1)/(sqrt(2))) (d) none of these

Solve the inequality sqrt((log)_2((2x-3)/(x-1)))<1

Find the solution of the inequality 2log_(1/4)(x+5)>9/4log_(1/(3sqrt(3)))(9)+log_(sqrt(x+5))(2)

If y=tan^(-1)sqrt((x+1)/(x-1)),t h e n(dy)/(dx)i s (-1)/(2|x|sqrt(x^2-1)) (b) (-1)/(2xsqrt(x^2-1)) 1/(2xsqrt(x^2-1)) (d) none of these

If sin^(-1)(x-1)+cos^(-1)(x-3)+tan^(-1)(x/(2-x^2))=cos^(-1)k+pi, then the value of k is (a)1 (b) -1/(sqrt(2)) (c) 1/(sqrt(2)) (d) non of these

int(2sin^(-1)x)/(sqrt(1-x^(2)))dx

The number of solutions of the equation cos^(-1)((1+x^2)/(2x))-cos^(-1)x=pi/2+sin^(-1)x is 0 (b) 1 (c) 2 (d) 3

The value of ("lim")_(xto2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)i s (a) 1/(8sqrt(3)) (b) 1/(4sqrt(3)) (c) 0 (d) none of these

y = sin^(-1)(x/sqrt(1+x^2)) + cos^(-1)(1/sqrt(1+x^2))

Complete solution set of tan^2(sin^(-1)x)>1 is (a) (-1,-1/(sqrt(2)))uu(1/(sqrt(2)),1) (b) (-1/(sqrt(2)),1/(sqrt(2)))~{0} (c) (-1,1)~{0} (d) none of these

CENGAGE-INVERSE TRIGONOMETRIC FUNCTIONS-All Questions
  1. If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then asqrt(1-a^2)+bsqrt(1-b^2)+cs...

    Text Solution

    |

  2. If asin^(-1)x-bcos^(-1)x=c , then asin^(-1)x+bcos^(-1)x is equal to 0 ...

    Text Solution

    |

  3. The solution of the inequality (log)(1/2)(sin)(1/2)sin^(-1)x >(log)(1/...

    Text Solution

    |

  4. For 0 < theta < 2pi , sin^(-1)(sintheta)>cos^(-1)(sintheta) is true wh...

    Text Solution

    |

  5. If sin^(-1)x+cot^(-1)((1)/(2))=(pi)/(2), then x is equalt to

    Text Solution

    |

  6. Solve (tan^(-1) x)^(2) + (cot^(-1) x)^(2) = (5pi^(2))/(8)

    Text Solution

    |

  7. The number of integer x satisfying sin^(-1)|x-2|+cos^(-1)(1-|3-x|)=pi/...

    Text Solution

    |

  8. The number of solutions of the equation cos^(-1)((1+x^2)/(2x))-cos^(-1...

    Text Solution

    |

  9. f(x)=tan^(-1)x+tan^(-1)(1/x);g(x)=sin^(-1)x+cos^(-1)x are identical fu...

    Text Solution

    |

  10. The value of a for which a x^2+sin^(-1)(x^2-2x+2)+cos^(-1)(x^2-2x+2)=1...

    Text Solution

    |

  11. Solve sin^(-1)((5)/(x))+sin^(-1)((12)/(x))=(pi)/(2)

    Text Solution

    |

  12. If cos^(-1)sqrt(p)+cos^(-1)sqrt(1-p)+cos^(-1)sqrt(1-q)=(3pi)/4, then t...

    Text Solution

    |

  13. If tan^(-1)(sin^2theta-2sintheta+3)+cot^(-1)(5sin^(2theta)+1)=pi/2, th...

    Text Solution

    |

  14. The product of all values of x satisfying the equation sin^(-1)cos((2x...

    Text Solution

    |

  15. The exhaustive set of value of a for which a-cot^(-1)3x=2tan^(-1)3x+co...

    Text Solution

    |

  16. If u=cot^(-1)sqrt(tanalpha)-tan^(-1)sqrt(tanalpha),t h e ntan(pi/4- u/...

    Text Solution

    |

  17. The solution set of the equation sin^(-1)sqrt(1-x^2)+cos^(-1)x=cot^(-1...

    Text Solution

    |

  18. The value of cos^(-1)sqrt(2/3)-cos^(-1)(sqrt(6)+1)/(2sqrt(3)) is equal...

    Text Solution

    |

  19. theta = tan^(-1) (2 tan^(2) theta) - tan^(-1) ((1)/(3) tan theta) " th...

    Text Solution

    |

  20. If y = tan^(-1).(1)/(2) + tan^(-1) b, (0 b lt 1) and 0 lt y le (pi)/(4...

    Text Solution

    |