Home
Class 12
MATHS
For any positive integer n , define fn...

For any positive integer `n` , define `f_n :(0,oo)rarrR` as `f_n(x)=sum_(j=1)^ntan^(-1)(1/(1+(x+j)(x+j-1)))` for all `x in (0, oo)` . Here, the inverse trigonometric function `tan^(-1)x` assumes values in `(-pi/2,pi/2)dot` Then, which of the following statement(s) is (are) TRUE? `sum_(j=1)^5tan^2(f_j(0))=55` (b) `sum_(j=1)^(10)(1+fj '(0))sec^2(f_j(0))=10` (c) For any fixed positive integer `n` , `(lim)_(xrarroo)tan(f_n(x))=1/n` (d) For any fixed positive integer `n` , `(lim)_(xrarroo)sec^2(f_n(x))=1`

A

`underset(j = 1)overset(5)sum tan^(2) (f_(j) (0)) = 55`

B

`underset(j =1)overset(10)sum (1 + f'_(j)(0)) sec^(2) (f_(j) (0)) = 10`

C

For any fixed positive inetger `n, underset(x rarr oo)("lim") tan (f_(n) (x)) = (1)/(n)`

D

For any fixed positive integer `n, underset(x rarr oo)("lim") sec^(2) (f_(n) (x)) = 1`

Text Solution

Verified by Experts

The correct Answer is:
A, B, D

`f_(n) (x) = underset(j =1)overset(n)sum tan^(-1) ((1)/(1 + (x + j) (x + j -1)))`
`= underset(j =1)overset(n)sum tan^(-1) (((x + j) - (x + j -1))/(1+(x +j) (x+j -1)))`
`= underset(j=1)overset(n)sum [tan^(-1) (x + j)-tan^(-1) (x + j -1)]`
`:. f_(n) (x) = tan^(-1) (x + n) - tan^(-1) (x)`
(1) `f_(n) (0) = tan^(-1) (n)`
`rArr tan^(2) (f_(n) (0)) = tan^(2) (tan^(-1) n) = n^(2)`
`underset(j =1)overset(5)sum tan^(2) (f_(j) (0)) = underset(j=1)overset(5)sum j^(2) = (5 xx 6 xx 11)/(6) = 55`
(2) `f'_(n) (x) = (1)/(1 + (x + n)^(2)) - (1)/(1 + x^(2))`
`rArr f'_(n) (0) = (1)/(1+ n^(2)) -1`
`rArr 1 + f'_(n) (0) = (1)/(1 + n^(2))`
Also, `sec^(2) (f_(n) (0)) = sec^(2) (tan^(-1) (n)) = 1 + n^(2)`
Hence, `(1 + f'_(n) (0)). sec^(2) (f_(n)(0)) = ((1)/(1 + n^(2))) (1 + n^(2)) =1`
So, `underset(j =1)overset(10)sum (1 + f'_(i)(0)) sec^(2) (f_(i) (0)) = underset(i=1)overset(10)sum 1 = 10`
(3) `underset(x rarr oo)("lim") tan (f_(n)(x)) = underset(x rarroo)("lim") (n)/(1 + x (n + x)) = 0`
(4) `underset(x rarroo)("lim") sec^(2) (f_(n) (x)) = underset(x rarr oo)("lim") (1 + tan^(2) (f_(n) (x))) = 1`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

For any positive integer n, lim_(xtoa)(x^(n)-a^(n))/(x-a)=na^(n-1)

Derivative of f(x)=x^n is nx^(n-1) for any positive integer n.

If f(x) =(p-x^n)^(1/n) , p >0 and n is a positive integer then f[f(x)] is equal to

If a_(0)=x,a_(n+1)=f(a_(n)), " where " n=0,1,2, …, then answer the following questions. If f(x)=(1)/(1-x), then which of the following is not true?

Let f(x)=lim_(nrarroo) sum_(r=0)^(n-1)(x)/((rx+1){(r+1)x+1}) . Then

Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x for all x in (0,oo) and f(1)=1 , then

if f(x)=(a-x^n)^(1/n), where a > 0 and n is a positive integer, then f(f(x))= (i) x^3 (ii) x^2 (iii) x (iv) -x

lim_(xto0^(+)) (sum_(r=1)^(2n+1)[x^(r)]+(n+1))/(1+[x]+|x|+2x), where ninN and [.] denotes the greatest integer function, equals

Let f(x)=lim_(nrarroo) (tan^(-1)(tanx))/(1+(log_(x)x)^(n)),x ne(2n+1)(pi)/(2) then

If ("lim")_(xvec0)[1+x+(f(x))/x]^(1/x)=e^3, then find the value of 1n(("lim")_(xvec0)[1+(f(x))/x]^(1/x))i s____

CENGAGE-INVERSE TRIGONOMETRIC FUNCTIONS-All Questions
  1. If the equation sin^(-1)(x^2+x+1)+cos^(-1)(lambda+1)=pi/2 has exactly ...

    Text Solution

    |

  2. sin{2(sin^(-1)(sqrt(5))/3-cos^(-1)(sqrt(5))/3)} is equal to (ksqrt(5)...

    Text Solution

    |

  3. The number of solutions of "cos"(2sin^(-1)("cot"(tan^(-1)(sec(6cos e c...

    Text Solution

    |

  4. If x, y, z are in A.P. and tan^(-1) x, tan^(-1) y and tan^(-1)z are al...

    Text Solution

    |

  5. Let tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1-x^2)) , where |x|<1/(sqrt(3))...

    Text Solution

    |

  6. The value of sum(i=1)^(13) (n^(n) + i^(n-1)) is

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. For any positive integer n , define fn :(0,oo)rarrR as fn(x)=sum(j=1...

    Text Solution

    |

  9. Match the following:

    Text Solution

    |

  10. Match list I with list II and select the correct answer using the code...

    Text Solution

    |

  11. Match the List-I and List-II using the correct code given below the li...

    Text Solution

    |

  12. Let f:[0,4pi]vec[0,pi] be defined by f(x)=cos^(-1)(cosx)dot The number...

    Text Solution

    |

  13. The number of real solution of the equation sin^(-1) (sum(i=1)^(oo) ...

    Text Solution

    |

  14. If alpha and beta are the two zeroes of the equation 3 cos ^-1(...

    Text Solution

    |

  15. If log 2 x gt 0 then the absolute value of log 1/pi(sin ^-1 (2 x)/(...

    Text Solution

    |

  16. Find the value of sin^(-1)(sin5)+cos^(-1)(cos10)+tan^(-1){tan(-6)}+cot...

    Text Solution

    |

  17. Total number of ordered pairs (x, y) satisfying Iyl=cosxandy=sin−1(sin...

    Text Solution

    |

  18. If the equation sin^(-1)(x^2+x+1)+cos^(-1)(lambda+1)=pi/2 has exactly ...

    Text Solution

    |

  19. Number of values of x satisfying the equation cos ^-1(x^2-.5 x+6)=...

    Text Solution

    |

  20. Prove that , tan^(-1)(cotx)+cot^(-1) (tan x) = pi-2x

    Text Solution

    |