Home
Class 12
MATHS
Convert the following polar coordinates ...

Convert the following polar coordinates to its equivalent Cartesian coordinates.
(i) `(2,pi)`
(ii) `(sqrt(3),pi//6)`

Text Solution

Verified by Experts

(i) `(2,pi//3)-=(r,theta)`
We have ` x=rcostheta=2"cos"(pi)/(3)=2xx(1)/(2)=1`
and `y=rsintheta=2"sin"(pi)/(3)=2xxsqrt(3)/(2)=sqrt(3)`
Therefore, the point is `(1,sqrt(3)` in the Cartesian coordinates.
(iii) `x=-sqrt(2) "cos"(pi)/(4)=-sqrt(2)((1)/(sqrt2))=-1`
`y=-sqrt(2)"sin"(pi)/(4) =-sqrt(2)((1)/(sqrt2))=-1`
So, the equivalent Cartesian coordinates for the given polar coordinates are `(-1,-1)`.
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE|Exercise Exercise 1.1|6 Videos
  • COORDINATE SYSYEM

    CENGAGE|Exercise Exercise 1.2|8 Videos
  • COORDINATE SYSTEM

    CENGAGE|Exercise Multiple Correct Answers Type|2 Videos
  • CROSS PRODUCTS

    CENGAGE|Exercise DPP 2.2|13 Videos

Similar Questions

Explore conceptually related problems

Convert the following polar coordinates to its equivalent Cartesian coordinates. (i) (2,pi/6) (ii) (2,(11pi)/6)

Convert rsintheta=rcostheta+4 into its equivalent Cartesian equation.

The polar coordinates equivalent to (-3,sqrt3) are

Convert the following Cartesian coordinates to the cooresponding polar coordinates using positive r. (i) (1,-1) (ii) (-3,-4)

Convert r=cos e cthetae^(rcostheta) into its equivalent Cartesian equation.

Convert r=4tanthetasectheta into its equivalent Cartesian equation.

The Cartesian coordinates of point having polar coordinates (-2, (2pi)/3) will be

Find the intercepts made by the following lines on the coordinate axes. (i) 3x-2y-6=0 (ii) 4x+3y+12=0