Home
Class 12
MATHS
If X ={-5,1,3,4} and Y={a,b,c} , then wh...

If X ={-5,1,3,4} and Y={a,b,c} , then which of the following relations are function from X to Y ?
(i) `R_1 = {(-5,a) ,(1,a) ,(3,b)}`
(ii) `R_2 = {(-5,b),(1,b),(3,a), (4,c)}`
(iii) `R_3 = {(-5,a),(1,a) ,(3,b) ,(4,c) ,(1,b)}`

Text Solution

Verified by Experts

The correct Answer is:
(i) ABC is triangle right angled at A
(ii) collinear points
(iii) ABC is right angled isoceles triangle

(i) `A(-2,2), B((8,-2),C(-4,-3)`
`AB=sqrt((8-(-2))^2+(-2-2)^(2))`
`=sqrt(100+16)=2sqrt(29)`
`BC=sqrt((8-(-4))^2+(-2-(-3))^(2))`
`=sqrt(144+1)=sqrt(5)=sqrt(29)`
`CA=sqrt((-2-(-4))^2+(2-(-3))^(2))`
`=sqrt(4+25)=sqrt(29)`
Thus, `AB^2+CA^2=BC^2`
So, triangle is right angled at A.
(ii) `A(-a,-b),B(a,b),C(a^2,ab)`
`AB=sqrt((2a)^2+(2b)^(2))=2sqrt(a^2+b^(2))`
`BC=sqrt((a^2-a)^2+b^2(a-1)^(2))=(a-1)sqrt(a^2+b^(2)`
`AC=sqrt((a^2+a)^2+b^2(a+1)^(2))=(a+1)sqrt(a^2+b^2)`
Thus, `AB+BC=AC`.
So, points are collinear.
(iii) `A(4,0),B(-1,-1),C(3,5)`.
`AB=sqrt((-1-4)^2+b^2(-1-0)^(2))=sqrt(25+1)=sqrt(26)`
`BC=sqrt((3+1)^2+b^2(5+1)^(2))=sqrt(16+36)=sqrt(52)`
`CA=sqrt((4-3)^2+b^2(0-5)^(2))=sqrt(1+25)=sqrt(26)`
Thus, `AB=CA and BC62=AB^2+CA62`
So, triangle ABC is right angled isoceles.
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE|Exercise Exercise 1.3|10 Videos
  • COORDINATE SYSYEM

    CENGAGE|Exercise Exercise 1.4|8 Videos
  • COORDINATE SYSYEM

    CENGAGE|Exercise Exercise 1.1|6 Videos
  • COORDINATE SYSTEM

    CENGAGE|Exercise Multiple Correct Answers Type|2 Videos
  • CROSS PRODUCTS

    CENGAGE|Exercise DPP 2.2|13 Videos

Similar Questions

Explore conceptually related problems

Let A = { 1,2,3,4} and B ={ a,b,c} Which of the following are relations from A to B ?

Examine each of the following relations given below and state in each case, giving reasons whether it is a function or not ? (i) R={(4,1),(5,1),(6,7)} (ii) R={(2,3),(2,5),(3,3),(6,6)} (iii) R={(1,2),(2,3),(3,4),(4,5),(5,6),(6,7)} (iv) R={(1,1),(2,1),(3,1),(4,1),(5,1)}

If X = {1,2,3,4,5}, Y = {1,3,5,7,9} determins which of the following relations from X to Y are functions ? Give reasonfor your answer. If it is a function. State its type. (i) R_(1) = {(x,y) | y = x + 2, x in X , y in Y } (ii) R_(2) = {(1,1),(2,1),(3,3),(4,3),(5,5)} (iii) R_(3) { (1,1),(1,3),(3,5),(3,7),(5,7)} (iv) R_(4) {(1,3),(2,5),(4,7),(5,9),(3,1)}

f={(2, 1), (3, b), (4, b), (5, c)} is a____.

Let A={ 1,2,3,4} , B={1,4,5} be two sets . If R is the relation '' lt '' from A to B , then Write R in roster form

Find the value of a , b , c , d , x , y from the following matrix equation . ({:(d , 8) , (3b , a):}) + ({:(3 , a) , (-2 , -4):})= ({:(2 , 2a) , (b , 4c):}) + ({:(0 , 1) , (-5 , 0):})

Let A={ 1,2,3,4} , B={1,4,5} be two sets . If R is the relation '' lt '' from A to B , then Write the domain and range of R.

If A= [(2,1),(4,-2)] ,B= [(4,-2),(1,4)] and C= [(-2,-3),(1,2)] find (III)A-(3B-C)

Find the value of a,b,c,d,x,y from the following matrix equation . ({:(d,8),(3b,a):})+({:(3,a),(-2,-4):})=({:(2,2a),(b,4c):})+({:(0,1),(-5,0):})

Express each of the following equations in the form of ax + by + c = 0 and write the values of a, b and c. (i) 3x + 4y = 5 (ii) x - 5 = sqrt3y (iii) 3x = y (iv) x/2+y/2=1/6 (v) 3x - 7 = 0