Home
Class 12
MATHS
If A B C having vertices A(acostheta...

If ` A B C` having vertices `A(acostheta_1,asintheta_1),B(acostheta_2asintheta_2),a n dC(acostheta_3,asintheta_3)` is equilateral, then prove that `costheta_1+costheta_2+costheta_3=sintheta_1+sintheta_2+sintheta_3=0.`

Text Solution

Verified by Experts

The correct Answer is:
NA

Since the circumcenter is at the origin, the orthocenter is
`x_1+x_2+x_3,x_1tantheta_1+x_2tantheta_2+x_3tantheta_3)`
`therefore a=x_1 +x_2+x_3`
and `b=x_1tantheta_1+x_2tantheta_2+x_3tantheta_3`
Also `x_1^(2)+x_1^(2) tantheta_1^(2) =x_2^(2)+x_2^(2)tan theta_2^(2)=x_3^(2)=x_3^(2)tan theta_3^(2)`
or `x_1sec theta_1=x_2sec theta_2=x_3sec theta_3=lambda` (say)
Now, `(a)/(b) =(x_1+x_2+x_3)/(x_1tantheta_1+x_2tan theta_2+x_3tantheta_3)`
`=(lambdacostheta_1+lambdatheta_2+lambdatheta_3)/(lambdacostheta_1thantheta_1+ lambdacostheta_2tantheta_2+lambdacostheta_2tan theta_3)`
`=(costheta_1+costheta_2+costheta_3)/(sintheta_1+sintheta+sintheta_3)` .
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE|Exercise Exercise 1.4|8 Videos
  • COORDINATE SYSYEM

    CENGAGE|Exercise Exercise 1.5|5 Videos
  • COORDINATE SYSYEM

    CENGAGE|Exercise Exercise 1.2|8 Videos
  • COORDINATE SYSTEM

    CENGAGE|Exercise Multiple Correct Answers Type|2 Videos
  • CROSS PRODUCTS

    CENGAGE|Exercise DPP 2.2|13 Videos

Similar Questions

Explore conceptually related problems

Prove that (1-costheta +cos2theta )/(sin2theta -sintheta)=cottheta

If (acostheta_1,asintheta_1),(acostheta_2,asintheta_2) and (acostheta_3,asintheta_3) represent the vertices of an equilateral triangle inscribed in a circle, then (a) costheta_1+costheta_2+costheta_3=0 (b) sintheta_1+sintheta_2+sintheta_3=0 (c) tantheta_1+tantheta_2+tantheta_3=0 (d) cottheta_1+cottheta_2+cottheta_3=0

Prove that (sintheta)/(cosectheta+cottheta)=1-costheta

costheta -sintheta -cottheta +1=0

Prove that (cottheta+cosectheta-1)/(cottheta-cosectheta+1)=(1+costheta)/sintheta

Prove that (sintheta +sin2theta)/(1+costheta +cos2theta)=tantheta

Prove that: (1+sintheta-costheta)/(1+sintheta+costheta)=tantheta/2

Prove that (tantheta +sectheta -1)/(tantheta-sectheta+1)=(1+sintheta)/costheta

(sintheta+sin2theta)/(1+costheta+cos2theta)