Home
Class 12
MATHS
If (xi ,yi),i=1,2,3, are the vertices...

If `(x_i ,y_i),i=1,2,3,` are the vertices of an equilateral triangle such that `(x_1+2)^2+(y_1-3)^2=(x_2+2)^2+(y_2-3)^2=(x_3+2)^2+(y_2-3)^2=(x_3+2)^2+(y_3-3)^2,` then find the value of `(x_1+x_2+x_3)/(y_1+y_2+y_3)` .

Text Solution

Verified by Experts

The correct Answer is:
`-2//3`

`(x_1+2)^2+(y_1-3)^2=(x_2+2)^2+(y_2-3)^2=(x_3+2)^2+(y_3-3)^2`
Therefore,the circumcenter of the triangle formed by points `(x_1,y_1),(x_2,y_2,(x_3,y_3)` is `(-2,3)`. But the triangle is equilateral, so,that centroid is `(-2,3)`.Therefore,
`(x_1+x_2+x_3)/(3)=-2,(y_1+y_2+y_3)/(3)=3`
or `(x_1+x_2+x_3)/(y_1+y_2+y_3)=-(2)/(3)`
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE|Exercise Exercise 1.4|8 Videos
  • COORDINATE SYSYEM

    CENGAGE|Exercise Exercise 1.5|5 Videos
  • COORDINATE SYSYEM

    CENGAGE|Exercise Exercise 1.2|8 Videos
  • COORDINATE SYSTEM

    CENGAGE|Exercise Multiple Correct Answers Type|2 Videos
  • CROSS PRODUCTS

    CENGAGE|Exercise DPP 2.2|13 Videos

Similar Questions

Explore conceptually related problems

If (x_i ,y_i),i=1,2,3, are the vertices of an equilateral triangle such that (x_1+2)^2+(y_1-3)^2=(x_2+2)^2+(y_2-3)^2=(x_3+2)^2+(y_3-3)^2, then find the value of (x_1+x_2+x_3)/(y_1+y_2+y_3) .

If (x+1, y-2)=(3,1), find the values of x and y.

If x^2+y^2=4 then find the maximum value of (x^3+y^3)/(x+y)

If (x+3+1, y-2/3)=(5/3, 1/3) , find the values of x and y.

If x ,y in R and x^2+y^2+x y=1, then find the minimum value of x^3y+x y^3+4.

A triangle has vertices A_i(x_i , y_i)fori=1,2,3 If the orthocentre of triangle is (0,0), then prove that |x_2-x_3y_2-y_3y_1(y_2-y_3)+x_1(x_2-x_3)x_3-x_1y_2-y_3y_2(y_3-y_1)+x_1(x_3-x_1)x_1-x_2y_2-y_3y_3(y_1-y_2)+x_1(x_1-x_2)|=0

A triangle has vertices A_(i) (x_(i),y_(i)) for i= 1,2,3,. If the orthocenter of triangle is (0,0) then prove that |{:(x_(2)-x_(3),,y_(2)-y_(3),,y_(1)(y_(2)-y_(3))+x_(1)(x_(2)-x_(3))),(x_(3)-x_(1) ,,y_(3)-y_(1),,y_(2)(y_(3)-y_(1))+x_(2)(x_(3)-x_(1))),( x_(1)-x_(2),,y_(1)-y_(2),,y_(3)(y_(1)-y_(2))+x_(3)(x_(1)-x_(2))):}|=0

If |(3x+4y,-3),(2,x+2y)|=|(7,-3),(2,3)| then x and y are