Home
Class 12
MATHS
If A B C having vertices A(acostheta...

If ` A B C` having vertices `A(acostheta_1,asintheta_1),B(acostheta_2asintheta_2),a n dC(acostheta_3,asintheta_3)` is equilateral, then prove that `costheta_1+costheta_2+costheta_3=sintheta_1+sintheta_2+sintheta_3=0.`

A

`costheta_1+costheta_2+costheta+3=0`

B

`sintheta_1+sintheta_2+sin theta_3=0`

C

`tantheta_1+tantheta_2+tantheta_3=0`

D

`cottheta_1+cottheta_2+cottheta_3=0`

Text Solution

Verified by Experts

The correct Answer is:
A, B

Vertices `(a cos theta_1,a sintheta_1),(acostheta_2,a sintheta_2)`, and origin is the circumcenter (centroid) of circumcircle. Therefore, the coordinates of the centroid are
`((a(costheta_1+costheta_2+costheta_3))/(3),(a(sintheta_1,+sintheta_2+sintheta_3))/(3))`
But as the centroid is the origin (0,0) we have `cos theta_1+costheta_2+costheta_3=0`
and `sin theta_1+sintheta_2+sintheta_3=0`
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE|Exercise Exercise (Comprehension)|10 Videos
  • COORDINATE SYSYEM

    CENGAGE|Exercise Exercise (Matrix)|4 Videos
  • COORDINATE SYSYEM

    CENGAGE|Exercise Exercise (Single)|59 Videos
  • COORDINATE SYSTEM

    CENGAGE|Exercise Multiple Correct Answers Type|2 Videos
  • CROSS PRODUCTS

    CENGAGE|Exercise DPP 2.2|13 Videos

Similar Questions

Explore conceptually related problems

Prove that (1-costheta +cos2theta )/(sin2theta -sintheta)=cottheta

If (acostheta_1,asintheta_1),(acostheta_2,asintheta_2) and (acostheta_3,asintheta_3) represent the vertices of an equilateral triangle inscribed in a circle, then (a) costheta_1+costheta_2+costheta_3=0 (b) sintheta_1+sintheta_2+sintheta_3=0 (c) tantheta_1+tantheta_2+tantheta_3=0 (d) cottheta_1+cottheta_2+cottheta_3=0

Prove that (sintheta)/(cosectheta+cottheta)=1-costheta

costheta -sintheta -cottheta +1=0

Prove that (cottheta+cosectheta-1)/(cottheta-cosectheta+1)=(1+costheta)/sintheta

Prove that (sintheta +sin2theta)/(1+costheta +cos2theta)=tantheta

Prove that: (1+sintheta-costheta)/(1+sintheta+costheta)=tantheta/2

Prove that (tantheta +sectheta -1)/(tantheta-sectheta+1)=(1+sintheta)/costheta

(sintheta+sin2theta)/(1+costheta+cos2theta)