Home
Class 12
MATHS
1+1/((1+2))+1/((1+2+3))+.....+1/((1+2+3+...

`1+1/((1+2))+1/((1+2+3))+.....+1/((1+2+3+...n))=(2n)/((n+1))`

Text Solution

Verified by Experts

`P(n) : 1 + (1)/(1+2) + (1)/(1+2+3) + "…."+(1)/(1+2+3+"…."+n) = (2n)/(n+1)`
For `n = 1`,
` L.H.S. = 1` and `R.H.S. = (2 xx 1)/(1+1) = 2/2 = 1`
Thus, ` P(1)` is true.
Let `P(n)` be true for some `n = k`.
i.e, `1+(1)/(1+2)+"……"+(1)/(1+2+3)+"......"+(1)/(1+2+3+"...."k) = (2k)/(k+1)"....."(1)`
Now, we have to prove that `P(n)` is true for `n = k + 1`.
ie., `1+(1)/(1+2) +"..."+(1)/(1+2+3)+"..."+(1)/(1+2+3+"....."+(k+1))`
`= (2(k+1))/(k+2)`
Adding `(1)/(1+2+3+"......"+(k+1))` on both sides of `(1)`, we get
`1+(1)/(1+2)+"...."+(1)/(1+2+3) +"...."(1)/(1+2+3+"....."+k) + (1)/(1+2+3+"...."+(k+1))`
` = (2k)/(k+1)+(1)/(1+2+3+"....."+(k+1))`
`= (2k)/(k+1)+(1)/(((k+1)(k+2))/(2))`
[Using `1+2+3+"...."+n = (n(n+1))/(2)`]
`= (2k)/((k+1)) + (2)/((k+1)(k+2))`
`= (2)/(k+1)((k(k+2)+1)/(k+2))`
`= (2(k+1)^(2))/((k+1)(k+2))`
`= (2(k+1))/((k+2))`
Thus, `P(k+1)` is the whenever `P(k)` is true.
Hence by the principle of mathemetical induction, statement `P(n)` is true for all natural numbers.
Promotional Banner

Topper's Solved these Questions

  • PRINCIPLE OF MATHEMATICAL INDUCTION

    CENGAGE|Exercise Exercise|9 Videos
  • PERMUTATION AND COMBINATION

    CENGAGE|Exercise Question Bank|4 Videos
  • PROBABILITY

    CENGAGE|Exercise Comprehension|2 Videos

Similar Questions

Explore conceptually related problems

Using Mathemtical induction, show that for any natural number n, (1)/(1.2)+(1)/(2.3)+(1)/(3.4)+...+(1)/(n(n+1))=(n)/(n+1)

Using the mathematical induction, show that for any natural number n ge 2,1/(1+2) + 1/(1+2+3) + 1/(1+2+3+4) +…+1/(1+2+3+…+n) =(n-1)/(n+1)

Prove that by using the principle of mathematical induction for all n in N : (1)/(3.5)+ (1)/(5.7)+ (1)/(7.9)+ ....+(1)/((2n+1)(2n+3))= (n)/(3(2n+3))

Prove that by using the principle of mathematical induction for all n in N : (1)/(1.4)+ (1)/(4.7)+(1)/(7.10)+...+ (1)/((3n-2)(3n+1))= (n)/(3n+1)

Using the mathematical induction, show that for any natural number, n ge 2,(1- 1/2^(2))(1-1/3^(2))(1-1/4^(2)). . .(1-1/n^(2))=(n+1)/(2n)

By the principle of mathematical induction, prove that, for nge1 1^(2) + 3^(2) + 5^(2) + . . .+ (2n-1)^(2)=((n(2n-1)(2n+1))/3)

Prove by mathematical induction 1/1.2 + 1/2.3 + . . .+ 1/((n)(n+1)) =n/((n+1))