Home
Class 12
MATHS
Evaluate int (x-1)/(x^2-2x-35) dx...

Evaluate `int (x-1)/(x^2-2x-35) dx`

Text Solution

Verified by Experts

For `n = 1`, the inequality becomes
`sinA_(1) le sin A_(1)`, which is clearly true.
Let us assume that the inequility holds for `n = k` where k is some positive integer.
Then `sinA_(1) + sinA_(2) + "……"+sinA_(n) le k sin ((A_(1) + A_(2) +"....." + A_(k))/(k))"......"(1)`
Adding `sin A_(k+1)` on both sides, we get
`sin A_(1) + sin A_(2) + "......" + sin A_(k) + suin A_(k+1) le k sin((A_(1) + A_(2) +"......."+A_(k))/(k)) + sin A_(k+1)`
Now, `k sin ((A_(1) + A_(2) + "......." + A_(k))/(k)) + sin A_(k+1)`
`= (k+1)[(k)/(k+1)sin alpha+(1)/(k+1) sin A_(k+1)]`,
where `alpha = (A_(1) + A_(2) + "......" + A_(g))/(k)`
` le (k + 1 )sin{(1+(1)/(k+1)) alpha + (1)/(k+1) A_(k+1)}`
{Using `p sin x + (1-p) sin y le sin[px + (1-p)y]}`
`= (k+1)sin((A_(1)+A_(2)+"......."A_(k+1))/(k+1))`
Thus, the inequality hold for `n = k +1`.
Hence, by the principle of mathematical induction, the inequality holds for all `n in N`.
Promotional Banner

Topper's Solved these Questions

  • PRINCIPLE OF MATHEMATICAL INDUCTION

    CENGAGE|Exercise Exercise|9 Videos
  • PERMUTATION AND COMBINATION

    CENGAGE|Exercise Question Bank|4 Videos
  • PROBABILITY

    CENGAGE|Exercise Comprehension|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate int (x-1)/(x^2-2x+1)dx

Evaluate int (x+1)/(x^2+2x+1) dx

Evaluate int (x^2-1)/(x^4+1)dx

Evaluate: int1/(2x^2+x-1)dx

Evaluate int (2x^(3)-1)/(x^(4)+x)dx

Evaluate int (x^4+x^2+1)/(x^2-x+1) dx

Evaluate int (1+x)^2 dx

Evaluate: int(x^2+1)/(x(x^2-1))dx

Evaluate int(1)/(2x^(2)+3x+5)dx .

Evaluate: int(x^3+1)/(x^2+x)dx