Home
Class 12
MATHS
Using the mathematical induction, show t...

Using the mathematical induction, show that for any natural number n,
`1/(1.2.3) + 1/(2.3.4) + 1/(3.4.5)+ …+ 1/(n.(n+1).(n+2)) =(n(n+3))/(4(n+1)(n+2))`

Text Solution

Verified by Experts

We have,
`P(n) = (1)/(1.2.3) + (1)/(2.3.4) + (1)/(3.4.5) + "….." + (1)/(n(n+1)(n+2))`
`= (n(n+3))/(4(n+1)(n+2))`
For `n = 1`,
L.H.S ` = (1)/(1.2.3) = 1/6` and R.H.S. `= (1.4)/(4.2.3) = (1)/(6)`
Thus, `P(1)` is true.
Let `P(n)` be true for some ` n = k`.
Then `(1)/(1.2.3) + (1)/(2.3.4) + (1)/(3.4.5) + "......." + (1)/(k(k+1)(k+2))`
`= (k(k+3))/(4(k+1)(k+2))"....."(1)`
Adding `(1)/((k+1)(k+3))` on both sides, we get
`(1)/(2.3.4) + (1)/(2.3.4) + (1)/(3.4.5) + "......" + (1)/(k(k+1)(k+2)) + (1)/(k(k+1)(k+2)) + (1)/((k+1)(k+2)(k+3))`
`= (k(k+3))/(4(k+1)(k+2)) + (1)/((k+1)(k+2)(k+3))`
`= (k(k+3))/((k+1)(k+2)) + (1)/((k+1)(k+2)(k+3))`
`= (1)/((k+1)(k+2)) {(k(k+3))/(4) + (1)/(k+3)}`
`= (1)/((k+1)(k+2)) {(k(k+3)^(2) + 4)/(4(k+3))}`
`= (1)/((k+1)(k+2)){(k^(3)+6k^(2) + 9k +4)/(4(k+3))}`
`= ((k+1)^(2)(k+4))/(4(k+1)(k+2)(k+3))`
`= ((k +1){(k+1)+3})/(4{(k+1)+1}{(k+1)+2)})`
Thus, `P(k+1)` is true whenever `P(k)` is true.
Hence, by the principle of mathematical induction, statement
`P(n)` is true for all natural numbers.
Promotional Banner

Topper's Solved these Questions

  • PRINCIPLE OF MATHEMATICAL INDUCTION

    CENGAGE|Exercise Exercise|9 Videos
  • PERMUTATION AND COMBINATION

    CENGAGE|Exercise Question Bank|4 Videos
  • PROBABILITY

    CENGAGE|Exercise Comprehension|2 Videos

Similar Questions

Explore conceptually related problems

Using the mathematical induction, show that for any natural number n, 1/2.5 + 1/5.8 + 1/8.11 + …+ 1/((3n-1)(3n+2))=n/(6n+4)

Using Mathemtical induction, show that for any natural number n, (1)/(1.2)+(1)/(2.3)+(1)/(3.4)+...+(1)/(n(n+1))=(n)/(n+1)

Using the mathematical induction, show that for any natural number n ge 2,1/(1+2) + 1/(1+2+3) + 1/(1+2+3+4) +…+1/(1+2+3+…+n) =(n-1)/(n+1)

Using the mathematical induction, show that for any natural number, n ge 2,(1- 1/2^(2))(1-1/3^(2))(1-1/4^(2)). . .(1-1/n^(2))=(n+1)/(2n)