Home
Class 12
MATHS
Prove that sum(k=1)^n 1/(k(k+1))=1−1/(n+...

Prove that `sum_(k=1)^n 1/(k(k+1))=1−1/(n+1)`.

Text Solution

Verified by Experts

`S = underset(r=1)overset(m)sum.^(m+1)C_(r) S_(r)`
`= [.^(m+1)C_(1)s_(1)+.^(m+1)C_(2)s_(2) + "……." + .^(m+1)C_(m)s_(m)]`
`= .^(m+1)C_(1)(1+2+3+"….."+n)`
`+ .^(m+1)C_(2)(1^(3)+2^(3)+3^(3)+"……."+n^(3))`
`+.^(m+1)C_(3)(1^(3)+2^(3)+3^(3)+"......."+n^(m))`
`+.^(m+1)C_(m)(1^(m)+2^(m)+3^(m)+"....."+n^(m))`
`= (.^(m+1)C_(1)1+.^(m+1)C_(2)1^(2)+.^(m+1)C_(3)1^(3) + "......."+.^(m+1)C_(m)1^(m))`
`+(.^(m+1)C_(1)2+.^(m+1)C_(2)2^(2)+.^(m+1)C_(3)2^(3)+"......." +.^(m+1)C_(m)2^(m))+"......."+(.^(m+1)C_(1)n+.^(m+1)C_(2)n^(2)+"......"+.^(m+1)C_(m)n^(m))`
` = [(1+1)^(m+1)-1-.^(m+1)C_(m+1)1^(m+1)]`
`+[(1+2)^(m+1)-1-.^(m+1)C_(m+1)2^(m+1)]`
`+[(1+3)^(m+1)-1-.^(m+1)C_(m+1)3^(m+1)]+"......"`
` = (2^(m+1)-1^(m+1))+(3^(m+1)-2^(m+1))+(4^(m+1)-3^(m+1))+"......"`
`+ [(1+n)^(m+1)-n^(m+1)]-n`
`= (1+n)^(m+1)-1-n=(1+n)^(m+1)- (n+1)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

If A = [((1)/(2),alpha),(0,(1)/(2))] , prove that sum_(k=1)^(n)"det" (A^(k))=(1)/(3)(1-(1)/(4^(n))).

Find sum_(k=1)^(n)(1)/(k(k+1)) .

Prove that sum_(k=1)^(n-1)(n-k)cos(2kpi)/n=-n/2 , where ngeq3 is an integer

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)

Prove that: sum_(k=1)^(100)sin(k x)cos(101-k)x=50"sin"(101 x)

Prove that sum_(r=1)^n(-1)^(r-1)(1+1/2+1/3++1/r)^n C_r=1/n .

Prove that sum_(r=1)^k(-3)^(r-1)^(3n)C_(2r-1)=0,w h e r ek=3n//2 and n is an even integer.