Home
Class 12
MATHS
Prove that sum(r=0)^n^n Crsinr xcos(n-r)...

Prove that `sum_(r=0)^n^n C_rsinr xcos(n-r)x=2^(n-1)sin(n x)dot`

Text Solution

Verified by Experts

`S = underset(r=0)overset(n)sum.^(n)C_(r)sin rx . Cos (n-r) x`
` = .^(n)C_(0) sin 0x cos n x + .^(n)C_(1) sin x cos (n-1)x`
`+ .^(n)C_(2)sin 2x cos (n-2)x"….." + .^(n)C_(n-1)sin (n-1) x cos x`
`+ .^(n)C_(n)sin nx cos 0x`
Writing the sum in reverse order, we get
`S = .^(n)C_(n) sin nx cos 0x + .^(n)C_(n-1) sin(n-1)xcos x`
`+ .^(n)C_(n-2)sin(n-2)x cos 2x + "......."`
`+ .^(n)C_(1) sinx cos (n-1)x+.^(n)C_(0) sin 0x cos nx`
`:. S = .^(n)C_(0) sin nx cos 0x + .^(n)C_(1) sin (n-1)x cos x`
`+ .^(n)C_(2) sin(n-2)x cos 2x + "......"`
`+ .^(n)C_(n-1) sinx cos(n-1)x + .^(n)C_(n) sin 0x cos x nx`
Adding (1) and (2), we get
`2S = .^(n)sin(0x+nx) + .^(n)C_(1)sin(x+(n-1)x)`
`+ .^(n)C_(2) sin (2x+(n-2)x) + "......" + .^(n)C_(n) sin (nx+0x)`
` = (.^(n)C_(0) + .^(n)C_(1)+.^(n)C_(2)+.^(n)C_(3)+"......"+.^(n)C_(n)) sin nx`
`= 2^(n) sin nx`
`:. S = 2^(n-1) sin nx`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Prove that sum_(r=0)^ssum_(s=1)^n^n C_s^ s C_r=3^n-1.

Prove that sum_(r=0)^n 3^r n Cundersetr = 4^n .

Prove that sum_(r=0)^(2n)r(.^(2n)C_r)^2=n^(4n)C_(2n) .

If p+q=1, then show that sum_(r=0)^n r^2^n C_rp^r q^(n-r)=n p q+n^2p^2dot

Prove that sum_(r=0)^n^n C_r(-1)^r[i^r+i^(2r)+i^(3r)+i^(4r)]=2^n+2^(n/2+1)cos(npi//4),w h e r ei=sqrt(-1)dot

If x+y=1, prove that sum_(r=0)^n r* ^nC_r x^r y^(n-r)=nxdot

Find the sum sum_(r=0)^n^(n+r)C_r .

Prove that sum_(r=1)^n(1/(costheta+"cos"(2r+1)theta))=(sinntheta)/(2sintheta* costheta*cos (n+1)theta),(w h e r e n in N)dot

Find the sum of sum_(r=1)^n(r^n C_r)/(n C_(r-1) .

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)