Home
Class 12
MATHS
Prove that 2 le (1+ (1)/(n))^(n) lt 3 fo...

Prove that `2 le (1+ (1)/(n))^(n) lt 3` for all `n in N`.

Text Solution

Verified by Experts

Let `a_(n) = l(1+(1)/(n))^(n)`
For `n = 1, (1+1/n)^(n) = 2`
Now, `(1+1/n)^(n) = .^(n)C_(0) + .^(n)C_(1) (1/n) + .^(n)C_(2)(1/n)^(n) + "……." + .^(n)C_(r)(1/n)^(r ) + "……" + .^(n)C_(n)(1/n)^(n)`
` = 1+1+(n(n-1))/(2!) (1)/(n^(2)) + (n(n-1)(n-2))/(3!) = 1/(n^(3)) + "......"`
` + (n(n-1)xx"......"xx2xx1)/(n!) (1)/(n^(n)) " " (1)`
` = 2+(1)/(2!)(1-(1)/(n)) + (1)/(3!)(1+(1)/(n))(1-(2)/(n)) +"....."`
`+ (1)/(n!)(1-(1)/(n))(1-(2)/(n))"......"(1-(n-1)/(n))" "(2)`
Hence, `a_(n) ge 2 ` for all `n in N`.
Also, `a_(n) le 1 +1 + (1)/(2!) + (1)/(3!) + "....." + (1)/(r!) + "......" + (1)/(n!)`
Fo` 2 le r le n`, we have `r! = 1 xx 2 xx 3 xx "......" xx r ge 2^(r-1)`.
`:. a_(n) le 1 + 1 + 1/2 + 1/(2^(2))+ "......" + (1)/(2^(r-1))+"....."+(1)/(2^(n-1))`.
` = 1+(1-(1//2)^(n))/(1-(1//2))`
` = 1+2(1-1/(2^(n))) = 3 - (1)/(2^(n-1))`
`:. a_(n) le 3 - 1/(2^(n-1)) lt 3 AA n ge 1`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Prove that ((n + 1)/(2))^(n) gt n!

Prove that 4n^(2)-1 is an odd number for all n in N

Prove that ((n^(2))!)/((n!)^(n)) is a natural number for all n in N.

Prove that (n !)^2 < n^n n! < (2n)! , for all positive integers n.

Show that 10^(2n)-1 is divisible by 11 for all n in N .

Prove that n! ( n +2) = n ! + ( n + 1) !

Prove that 2.7^(n)+ 3.5^(n)-5 is divisible by 24 for all n in N

The greatest positive integer which divides n(n+1)(n+2)(n+3) for all ninN is