Home
Class 12
MATHS
If T0,T1, T2,.....Tn represent the terms...

If `T_0,T_1, T_2,.....T_n` represent the terms in the expansion of `(x+a)^n ,` then find the value of `(T_0-T_2+T_4-....)^2+(T_1-T_3+T_5-.....)^2n in Ndot`

Text Solution

Verified by Experts

`(x-a)^(n) = .^(n)C_(0)x^(n) + .^( n)C_(1)x^(n-1)a+.^(n)C_(2)x^(n-2)a^(2)+.^(n)C_(3)x^(n-3)a^(3)+"…."`
`= T_(0) + T_(1) + T_(2) + T_(3) + "……"`
Repalcing a by ai, we get
`(x+ai)^(n) = .^(n)C_(0)x^(n) + .^(n)C_(1)x^(n-1)ai + .^(n)C_(2)x^(n-2)(ai)^(2) + .^(n)C_(3)x^(n-3) (ai)^(3) + "....."`
` = (.^(n)C_(0)x^(n)-.^(n)C_(1)x^(n-2)a^(2) + .^(n)C_(4)x^(n-4)a^(4)-"......") + i(.^(n)C_(1)x^(n)a-.^(n)C_(3)x^(n-3)a^(3)+.^(n)C_(5)x^(n-5)a^(5)-"......")`
` = (T_(0) - T_(2) + T_(4) - ".....") + i(T_(1) - T_(3) + T_(5)-".....")`
Taking modulus of both sides and squaring, we get
`|x+ai|^(2n)=|(T_(0)-T_(2)+T_(4)-".......") + i(T_(i ) - T_(3) + T_(5) - ".....")|^(2)`
or `(x^(2)+a^(2))^(n) = (T_(0) - T_(2) + T_(4)-"......")^(2)+(T_(1) - T_(3) + T_(5) -"......")^(2)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Find the coefficient of t^8 in the expansion of (1+2t^2-t^3)^9 .

If t_(n)" is the " n^(th) term of an A.P. then the value of t_(n+1) -t_(n-1) is ……

If int_0^1(e^t)/(1+t)dt=a , then find the value of int_0^1(e^t)/((1+t)^2)dt in terms of a .

Find the locus of the point (t^2-t+1,t^2+t+1),t in Rdot

Find the derivative of the function g(t) = ((t-2)/(2t+1)) .

The point of intersection of the tangent at t_(1)=t and t_(2)=3t to the parabola y^(2)=8x is . . .

If t_(n)" is the " n^(th) term of an A.P., then t_(2n) - t_(n) is …..

Let y=x^3-8x+7a n dx=f(t) and (dy)/(dx)=2a n dx=3 at t=0, then find the value of (dx)/(dt) at t = 0

If the normals at points t_1a n dt_2 meet on the parabola, then t_1t_2=1 (b) t_2=-t_1-2/(t_1) t_1t_2=2 (d) none of these

The base of a triangle is divided into three equal parts. If t_1, t_2,t_3 are the tangents of the angles subtended by these parts at the opposite vertex, prove that (1/(t_1)+1/(t_2))(1/(t_2)+1/(t_3))=4(1+1/t_2^2)dot