Home
Class 12
MATHS
If n=12 m(m in N), prove that ^n C0-(^n...

If `n=12 m(m in N),` prove that `^n C_0-(^n C_2)/((2+sqrt(3))^2)+(^n C_4)/((2+sqrt(3))^4)-(^n C_6)/((2+sqrt(3))^6)+ddot=((2sqrt(2))/(1+sqrt(3)))^ndot`

Text Solution

Verified by Experts

`.(n)C_(0)-(.^(n)C_(2))/((2+sqrt(3))^(2))+(.^(n)C_(4))/((2+sqrt(3))^(4))-(.^(n)C_(6))/((2+sqrt(3))^(6))+"...."`
= Real part of `(1+(i)/(2sqrt(3)))^(n)`
= Real part of `(1+i(2-sqrt(3))^(n)`
= Real part of `(1+ I tan'(pi)/(12))^(n)`
= Real part of `((cos'pi/12+isin'(pi)/(12))^(n))/(cos^(n)'(pi)/(12))`
= Real part of `((cos' (npi)/(12)+isin'(npi)/(12)))/(cos^(n)'(pi)/(12))`
` = (cos'(npi)/(12))/(cos^(n)'(pi)/(12)) = (cos mpi)/(cos^(n)'(pi)/(12))`
` = (-1)^(m)((2sqrt(2))/(1+sqrt(3)))^(n) , [:' cos'(pi)/(12) = (sqrt(3) + 1)/(2sqrt(2))]`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Prove that ^n C_1(^n C_2)(^n C_3)^3(^n C_n)^nlt=((2^n)/(n+1))^(n+1_C()_2),AAn in Ndot

Prove that (^n C_0)/1+(^n C_2)/3+(^n C_4)/5+(^n C_6)/7+.....+dot=(2^n)/(n+1)dot

Prove that ^n C_0 ^(2n)C_n- ^n C_1 ^(2n-2)C_n+ ^n C_2^(2n-4)C_n-=2^ndot

Prove that ^n C_0^n C_0-^(n+1)C_1^n C_1+^(n+2)C_2^n C_2-=(-1)^ndot

The value of log_((9)/(4))((1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3)))))...oo) is

Prove that n C_0+^n C_3+^n C_6+=1/3(2^n+2cos(npi)/3) .

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

The straight line 3x+4y-12=0 meets the coordinate axes at Aa n dB . An equilateral triangle A B C is constructed. The possible coordinates of vertex C (a) (2(1-(3sqrt(3))/4),3/2(1-4/(sqrt(3)))) (b) (-2(1+sqrt(3)),3/2(1-sqrt(3))) (c) (2(1+sqrt(3)),3/2(1+sqrt(3))) (d) (2(1+(3sqrt(3))/4),3/2(1+4/(sqrt(3))))

Prove that sum_(r=0)^(2n)r(.^(2n)C_r)^2=n^(4n)C_(2n) .

Prove that (C_1)/1-(C_2)/2+(C_3)/3-(C_4)/4++((-1)^(n-1))/n C_n=1+1/2+1/3++1/ndot