Home
Class 12
MATHS
Find (i) the last digit, (ii) the last t...

Find (i) the last digit, (ii) the last two digits, and (iii) the last three digits of `17^(256)dot`

Text Solution

Verified by Experts

We have
`17^(256) = (17^(2))^(128) = (289)^(128) = (290-1)^(128)`
`:. 17^(256) = .^(128)C_(0)(290)^(128)-.^(128)C_(1)(290)^(127)+.^(128)C_(2)(290)^(126)-"....."`
`- .^(128)C_(125)(290)^(3)+.^(128)C_(126)(290)^(2)-.^(128)C_(127)(290)+1`
`=[.^(128)C_(0)(290)^(128) - .^(128)C_(1)(290)^(127)+.^(128)C_(2)(290)^(126)-"....."`
`-.^(128)C_(125)(290)^(3)]+.^(128)C_(126)(290)^(2) -.^(128)C_(127)(290)+1`
`=1000m+((128)(127))/(2)(290)^(2)-128xx290+1`
`= 1000 m + (128)(127)(290)(145)-128xx290-1`
`= 1000m+(128)(290)(127xx145-1)+1`
`=1000m+(128)(290)(18414)+1`
`=1000m+683527680+1`
`= 1000m+683527000+680+1`
`= 1000(m+683527)+681`
Hence, the last three digits of `17^(256)` are `6,8,1`. As a result, the last two digits of `17^(256)` are `8, 1` and the last digit of `17^(256)` is 1.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Find the last three digits of the number 27^(27)dot

Find the last two digits in the number 11^(100)

Find the last two digits of the number 7^(400)

Find the last digits of the number 7^(400) .

Find the last two digits of the number 3^(600) .

Find the last two digits of the number (23)^(14)dot

What is the last digit of 6^(100) .

The sum of last 3 digits of 3^100 is

Count the numbers between 999 and 10,000 subject to the condition that there are . (i) no restriction . (ii) no digit is repeated . (iii) at least one of the digits is repeated .