Home
Class 12
MATHS
If (2+sqrt(3))^n=I+f, where I and n are ...

If `(2+sqrt(3))^n=I+f,` where `I` and `n` are positive integers and 0

Text Solution

Verified by Experts

`(2+sqrt(3))^(n) = I + f`
or `I + f = 2^(n) + .^(n)C_(1)2^(n-1) sqrt(3) + .^(n)C_(2)2^(n-2)(sqrt(3))^(2) + .^(n)C_(3)2^(n-3) (sqrt(3))^(3) + "….." (1)`
Now, `0 lt 2 - sqrt(3) - 1`
`rArr 0 (2-sqrt(3))^(n) lt 1`
Let `(2-sqrt(3))^(n) lt 1`
`:. f' = 2^(n) - .^(n)C_(1) 2^(n-1)sqrt(3)+.^(n)C_(2)2^(n-2)(sqrt(3))^(2) - .^(n)C_(3)2^(n-3)(sqrt(3))^(3) + "....." (2)`
Adding (1) and (2), we get
`I + f + f' = 2[2^(n) + .^(n)C_(2)2^(n-2)xxsqrt(3)+"....."]`
or `I + f + f' = "even integer" " "(3)`
Now, `0 lt f lt 1` and `0 lt f' lt 1`
`:. 0 lt f + f' lt 2`
Hence, from (3) we conclude that `f + f'` is an integer between 0 and 2. Therefore,
`f + f' = 1` or `f' = 1 - f " " (4)`
From (3) and (4), we get `I + 1` is an even interger. Therefore, I is an odd integer. Now,
`I + f = (2+sqrt(3))^(n), f' = 1 - f = (2-sqrt(3))^(n)`
`:. (I+f)(1-f) = [(2+sqrt(3))(2-sqrt(3))]^(n) = (4-3)^(n) = I`
`:. (I + f) (1-f) = 1`.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

if f(x)=(a-x^n)^(1/n), where a > 0 and n is a positive integer, then f(f(x))= (i) x^3 (ii) x^2 (iii) x (iv) -x

If f(x) =(p-x^n)^(1/n) , p >0 and n is a positive integer then f[f(x)] is equal to

Show that int_0^(npi+v)|sinx|dx=2n+1-cosv , where n is a positive integer and , 0<=vltpi

Prove that (a) (1+i)^n+(1-i)^n=2^((n+2)/2).cos((npi)/4) , where n is a positive integer. (b) (1+isqrt(3))^n+(1-isqrt(3)^n=2^(n+1)cos((npi)/3) , where n is a positive integer

Evaluate int_(0)^(infty)(x^(n))/(n^(x)) dx, where n is a positive integer.

Prove that 2^n >1+nsqrt(2^(n-1)),AAn >2 where n is a positive integer.

Show that the middle term in the expansion of (1 + x)^(2n) is (1.3.5.........(2n - 1))/(n!)2^(n)x^(n) , where n is a positive integer.

If (4+sqrt(15))^n=I+f,w h r en is an odd natural number, I is an integer and 0