Home
Class 12
MATHS
Statement 1: If p is a prime number (p!=...

Statement 1: If `p` is a prime number `(p!=2),` then `[(2+sqrt(5))^p]-2^(p+1)` is always divisible by `p(w h e r e[dot]` denotes the greatest integer function). Statement 2: if `n` prime, then `^n C_1,^n C_2,^n C_2 ,^n C_(n-1)` must be divisible by `ndot`

Text Solution

Verified by Experts

We have,
`(2+sqrt(5))^(n) + (2-sqrt(5))^(n)`
`= 2{2^(p) + .^(p)C_(2)(2^(p-2))(5) + .^(p)C_(4)(2^(p-4))(5^(2))+"…."+.^(P)C_(p-1)(2)(5^((p-1)//2))}"….."(1)`
From (1), at is clear that `(2+sqrt(5))^(p) + (2-sqrt(5))^(p)` is an integer.
Also, `-1 lt [(2-sqrt(5))^(p)]` , (as p is odd)
`= (2+sqrt(5))^(p) + (2-sqrt(5))^(p)`
So, ` [(2+sqrt(5)y^(2)] = (2+sqrt(5))^(p) + (2-sqrt(5))^(p)`
` = 2^(p+1)+.^(p)C_(2)(2^(p-1)) (5) + "......."`
`+.^(p)C_(p-1)(2)^(2) (5^((p-1)//2)))`
`:. [(2-sqrt(5))^(p)] - 2^(p+1) = 1 {.^(p)C_(2)(2^(p-2))(5) + .^(p)C_(4) (2^(p-4))(5^(2))`
`+ "......." + .^(p)C_(p-1)(2)(5^((p-1)//2))]`
Now, all the binomial coefficients `.^(p)C_(2), .^(p)C_(4),"......"..^(p)C_(p-1)` are divisible by the prime p.
Thus, R.H.S. is divisible by p.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Let R=(5sqrt(5)+11)^(2n+1)a n df=R-[R]w h e r e[] denotes the greatest integer function, prove that Rf=4^(2n+1)

If p=(8+3sqrt(7))^n a n df=p-[p],w h e r e[dot] denotes the greatest integer function, then the value of p(1-f) is equal to a. 1 b. 2 c. 2^n d. 2^(2n)

P=n(n^(2)-1)(n^(2)-4)(n^(2)-9)…(n^(2)-100) is always divisible by , (n in I)

Prove that ^n C_0^n C_0-^(n+1)C_1^n C_1+^(n+2)C_2^n C_2-=(-1)^ndot

If ^n P_r=^n P_(r+1)a n d^n C_r=^n C_(r-1,) then the value of n+r is.

int_0^x[sint]dt ,w h e r ex in (2npi,(2n+1)pi),n in N ,a n d[dot] denotes the greatest integer function is equal to -npi (b) -(n+1)pi 2npi (d) -(2n+1)pi

Prove that ^n C_0 ^(2n)C_n- ^n C_1 ^(2n-2)C_n+ ^n C_2^(2n-4)C_n-=2^ndot

If 9^7+7^9 is divisible b 2^n , then find the greatest value of n ,w h e r en in Ndot

p is a prime number and n

Statement 1: 3^(2n+2)-8n-9 is divisible by 64 ,AAn in Ndot Statement 2: (1+x)^n-n x-1 is divisible by x^2,AAn in Ndot