Home
Class 12
MATHS
Prove that sum(k=0)^(n) (-1)^(k).""^(3n...

Prove that ` sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)`

Text Solution

Verified by Experts

We have,
`S = underset(k = 0)overset(n)sum(-1)^(k) . .^(3n)C_(k) = .^(3n)C_(0) - .^(3n)C_(1) + .^(3n)C_(2) + "……" + (-1)^(n)..^(3n)C_(n)`
But
`.^(3n)C_(0) = .^(3n-1)C_(0)`
`-.^(3n)C_(1) = -.^(3n-1)C_(0) - .^(3n-1)C_(1)`
`.^(3n)C_(2) = .^(3n-1)C_(1) .^(3n-1)C_(2)`
`-.^(3n)C_(3) = -.^(3n-1)C_(2) - .^(3n-1)C_(3)`
`{:("......"),("......"):}" "{:("......"),("......"):}`
`(-1)^(n)..^(3n)C_(n) = (-1)^(n).^(3n-1)C_(n-1)+(-1)^(n).^(3n-1)C_(n)`
On adding, we get
`S = (-1)^(n).^(3n-1)C_(n)`.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Prove that sum_(k=1)^(n)(1)/(k(k+1))=1-(1)/(n+1).

Prove that sum_(k=1)^n 1/(k(k+1))=1−1/(n+1) .

Find sum_(k=1)^(n)(1)/(k(k+1)) .

The sum S_(n)=sum_(k=0)^(n)(-1)^(k)*^(3n)C_(k) , where n=1,2,…. is

If s_(n) = sum_(r = 0)^(n) 1/(""^(n)C_(r)) and t_(n) = sum _(r = 0)^(n) r/(""^(n)C_(r)) ,then t_(n)/s_(n) is equal to

Prove that .^(n)C_(1) + 2 .^(n)C_(2) + 3 .^(n)C_(3) + "…." + n . ^(n)C_(n) = n 2^(n-1) .

Prove that underset(r = 0) overset (n)(sum) 3^(r) ""^(n)C_(r) = 4^(n)

Prove that sum_(r=0)^ssum_(s=1)^n^n C_s^ s C_r=3^n-1.

Prove that .^(n)C_(0) - ^(n)C_(1) + .^(n)C_(2)- ^(n)C_(3) + "…" + (-1)^(r) + .^(n)C_(r) + "…" = (-1)^(r ) xx .^(n-1)C_(r ) .