Home
Class 12
MATHS
Prove that sum(alpha+beta+gamma=10)^(10 ...

Prove that `sum_(alpha+beta+gamma=10)^(10 !)/(alpha!beta!gamma!)=3^(10)dot`

Text Solution

Verified by Experts

Consider expansion of `(x+y+z)^(10)`
General term `T_(r ) = (10!)/(alpha!beta!gamma!) x^(alpha)y^(beta)z^(gamma)`. Where `alpha + beta + gamma = 10`
Now `underset(alpha+beta+gamma=10)(sum)(10!)/(alpha!beta!gamma!)=3^(10)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma, in (0,pi/2) , then prove that (s i(alpha+beta+gamma))/(sinalpha+sinbeta+singamma)<1

Prove that cosalpha+cosbeta+cosgamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/2)cos((beta+gamma)/2)cos((gamma+alpha)/2)

Given alpha+beta-gamma=pi, prove that sin^2alpha+sin^2beta-sin^2gamma=2sinalphasinbetacosgammadot

If alpha,beta,gamma are different from 1 and are the roots of a x^3+b x^2+c x+d=0a n d(beta-gamma)(gamma-alpha)(alpha-beta)=(25)/2 , then prove that |alpha/(1-alpha)beta/(1-beta)gamma/(1-gamma)alphabetagammaalpha^2beta^2gamma^2|=(25 d)/(2(a+b+c+d))

If cos alpha + cos beta + cos gamma = sin alpha + sin beta + sin gamma = 0 , show that sin 3alpha + sin 3 beta + sin 3gamma = 3 sin (alpha + beta + gamma)

If cosalpha+cosbeta+cosgamma=0a n da l sosinalpha+sinbeta+singamma=0, then prove that cos2alpha+cos2beta+cos2gamma =sin2alpha+sin2beta+sin2gamma=0 sin3alpha+sin3beta+sin3gamma=3sin(alpha+beta+gamma) cos3alpha+cos3beta+cos3gamma=3cos(alpha+beta+gamma)

If cos alpha + cos beta + cos gamma = sin alpha + sin beta + sin gamma = 0 , show that cos 3alpha + cos 3 beta + cos gamma = 3 cos (alpha + beta + gamma) and

Prove that |2alpha+beta+gamma+deltaalphabeta+gammadeltaalpha+beta+gamma+delta2(alpha+beta)(gamma+delta)alphabeta(gamma+delta)+gammadelta(alpha+beta)alphabeta+gammadeltaalphabeta(gamma+delta)+gammadelta(alpha+beta)2alphabetagammadelta|=0

If alpha,beta,gamma are such that alpha+beta+gamma=2,""alpha^2+beta^2+gamma^2=6,""alpha^3+beta^3+gamma^3=8,t h e n""alpha^4+beta^4+gamma^4 is a. 18 b. 10 c. 15 d. 36

Prove that |((beta+gamma-alpha-delta)^4,(beta+gamma-alpha-delta)^2,1),((gamma+alpha-beta-delta)^4,(gamma+alpha-beta-delta)^2,1),((alpha+beta-gamma-delta)^4,(alpha+beta-gamma-delta)^2,1)|=-64(alpha-beta)(alpha-gamma)(alpha-delta)(beta-delta)(gamma-delta)