Home
Class 12
MATHS
Prove that .^(n)C(1) + 2 .^(n)C(2) + 3 ...

Prove that `.^(n)C_(1) + 2 .^(n)C_(2) + 3 .^(n)C_(3) + "…." + n . ^(n)C_(n) = n 2^(n-1)`.

Text Solution

Verified by Experts

Method I :
`.^(n)C_(1) + 2.^(n)C_(2)+3.^(n)C_(3)+"….."+n.^(n)C_(n)`
`=underset(r=1)overset(n)sumr.^(n)C_(r)`
`= n underset(r=1)overset(n)sum.^(n-1)C_(r-1)`
`= n(.^(n-1)C_(0) + .^(n-1)C_(1) + .^(n-1)C_(2) + .^(n-1)C_(3)+"…."+.^(n-1)C_(n-1))`
`= n2^(n-1)`
Method II :
We have `(1+x)^(n) = .^(n)C_(0) + .^(n)C_(1)x+.^(n)C_(2)x^(2)+"...."+.^(n)C_(n)x^(n)`
Differentiating w.r.t x, we get
`n(1+x)^(n-1)= .^(n)C_(1)+2 xx .^(n)C_(2)x + 3 xx .^(n)C_(3)x^(2) +"......" + n xx .^(n)C_(n)x^(n-1)`
Putting `x = 1`, we get
`n2^( n-1) = .^(n)C_(1)+2xx .^(n)C_(2) + "....." + n xx .^(n)C_(n)`
Using `A.M. ge G.M.`, we get
`(.^(n)C_(1)+2.^(n)C_(2)+3.^(n)C_(3)+".....+n.^(n)C_(n))/((n(n+1))/(2))`
`[(.^(n)C_(1))(.^(n)C_(2))^(2)(.^(n)C_(3))^(3)"....."(.^(n)C_(n))^(n)]^((1)/((pi(n-1))/2))`
`rArr (n2^(n-1))/((n(n+1))/(2))ge [(.^(n)C_(1))(.^(n)C_(2))^(2)(.^(n)C_(3))^(3)"....."(.^(n)C_(n))^(n)]^((2)/(n(n+1)))`
`(.^(n)C_(1))(.^(n)C_(2))^(2)(.^(n)C_(3))^(3)"....."(.^(n)C_(n))^(n)le((2^(n))/(n+1))^((n(n+1))/(2))`
or `(.^(n)C_(1))(.^(n)C_(2))^(2)(.^(n)C_(3))^(3)"....."(.^(n)C_(n))^(n)le((2^(n))/(n+1))^(.^(n+1)C_(2))`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Prove that .^(n)C_(0) +5 xx .^(n)C_(1) + 9 xx .^(n)C_(2) + "…." + (4n+1) xx .^(n)C_(n) = (2n+1) 2^(n) .

Prove that .^(n)C_(0) - ^(n)C_(1) + .^(n)C_(2)- ^(n)C_(3) + "…" + (-1)^(r) + .^(n)C_(r) + "…" = (-1)^(r ) xx .^(n-1)C_(r ) .

Find the sum 1.^(n)C_(0) + 3 .^(n)C_(1) + 5.^(n)C_(2) + "….." + (2n+1).^(n)C_(n) .

Prove that ""^(n)C_r + ""^(n)C_(r-1) = ""^(n+1)C_r

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

If .^(n)C_(8)=^(n)C_(6) , then find .^(n)C_(2) .

Prove that .^(2n)C_(n) = ( 2^(n) xx 1 xx 3 xx …(2n-1))/(n!)

Prove that (.^(n)C_(1)sin2x+.^(n)C_(2)sin4x+.^(n)C_(3)sin6x+"…..")/(1+.^(n)C_(1)cos2x+.^(n)C_(2)cos4x+.^(n)C_(3)cos 6x+"……")

In .^(2n)C_(3) :.^(n)C_(3) = 11 : 1 then n is

If ""^(n)C_(8)=""^(n)C_(2) , find ""^(n)C_(2) .