Home
Class 12
MATHS
Find the sum 3^n C0-8^n C1+13^n C2xx^n C...

Find the sum `3^n C_0-8^n C_1+13^n C_2xx^n C_3+dot`

Text Solution

Verified by Experts

The general term of the series is `T_(r) = (-1)^(r ) (3+5r).^(n)C_(r )`
where `r = 0, 1, 2, "…..", n`. Therefore, sum of the series is given by
`S=underset(r=0)overset(n)sum(-1)^(r)(3+5r).^(n)C_(r)`
`=3(underset(r=0)overset(n)sum(-1)^(r).^(n)C_(r))+5(underset(r=1)overset(n)sum(-1)^(r ) n .^(n-1)C_(r-1))`
`= 3(underset(r=0)overset(n)sum(-1)^(r).^(n)C_(r))-5(underset(r=1)overset(n)sum(-1)^(r ) .^(n-1)C_(r-1))`
`= 3(1-1)^(n) - 5n(1-1)^(n-1)`
`= 0`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Find the sum 3^n C_0-8^n C_1+13^n C_2 - 18^n C_3+..

Find the sum ^n C_0+^n C_4+^n C_8+.......

If "^n C_8=^n C_6, then find "^n C_2dot

Find the sum 1.^(n)C_(0) + 3 .^(n)C_(1) + 5.^(n)C_(2) + "….." + (2n+1).^(n)C_(n) .

Prove that ^n C_0^n C_0-^(n+1)C_1^n C_1+^(n+2)C_2^n C_2-=(-1)^ndot

Find the sum sum_(r=0)^n^(n+r)C_r .

Prove that "^n C_0^(2n)C_n-^n C_1^(2n-1)C_n+^n C_2xx^(2n-2)C_n++(-1)^n^n C_n^n C_n=1.

Find the sum sum_(r=1)^n r^2(^n C_r)/(^n C_(r-1)) .

Find the sum of sum_(r=1)^n(r^n C_r)/(n C_(r-1) .

Find the coefficient of x^n in the polynomial (x+^n C_0)(x+3^n C_1)xx(x+5^n C_2)[x+(2n+1)^n C_n]dot