Home
Class 12
MATHS
If x+y=1, prove that sum(r=0)^n r* ^nCr ...

If `x+y=1,` prove that `sum_(r=0)^n r* ^nC_r x^r y^(n-r)=nxdot`

Text Solution

Verified by Experts

We have
`underset(r=0)overset(n)sumr.^(n)C_(r)x^(r )y^(n-r) = underset(r=1)overset(n)sumn.^(n-1)C_(r-1)x^(r-1)x^(1)y^(n-r)`
` = nx underset(r=1)overset(n)sum .^(n-1)C_(r-1)x^(r-1)y^((n-1)-(r-1))`
`= nx(x+y)^(n-1)`
` = nx , [:' x + y = 1]`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Prove that sum_(r=0)^n^n C_rsinr xcos(n-r)x=2^(n-1)sin(n x)dot

If p+q=1, then show that sum_(r=0)^n r^2^n C_rp^r q^(n-r)=n p q+n^2p^2dot

Prove that sum_(r=0)^n 3^r n Cundersetr = 4^n .

Prove that sum_(r=0)^(2n)r(.^(2n)C_r)^2=n^(4n)C_(2n) .

Find the sum sum_(r=0)^n^(n+r)C_r .

Prove that sum_(r=0)^ssum_(s=1)^n^n C_s^ s C_r=3^n-1.

Prove that sum_(r=0)^n^n C_r(-1)^r[i^r+i^(2r)+i^(3r)+i^(4r)]=2^n+2^(n/2+1)cos(npi//4),w h e r ei=sqrt(-1)dot

Prove that sum_(r=0)^n(-1)^r^n C_r[1/(2^r)+3/(2^(2r))+7/(2^(3r))+(15)/(2^(4r))+ u ptomt e r m s]=(2^(m n)-1)/(2^(m n)(2^n-1))

Prove that sum_(r=1)^n(-1)^(r-1)(1+1/2+1/3++1/r)^n C_r=1/n .

Statement1: if n in Na n dn is not a multiple of 3 and (1+x+x^2)^n=sum_(r=0)^(2n)a_r x^r , then the value of sum_(r=0)^n(-1)^r a r^n C_r is zero Statement 2: The coefficient of x^n in the expansion of (1-x^3)^n is zero, if n=3k+1orn=3k+2.