Home
Class 12
MATHS
Prove that (C1)/2+(C3)/3+(C5)/6+=(2^(n+1...

Prove that `(C_1)/2+(C_3)/3+(C_5)/6+=(2^(n+1)-1)/(n+1)dot`

Text Solution

Verified by Experts

`S = (.^(n)C_(1))/(2)+(.^(n)C_(3))/(4)+(.^(n)C_(5))/(6)+"..."`
`:. T_(r) = (.^(n)C_(2r-1))/(2r)= (.^(n+1)C_(2r))/(n+1)`, where `r = 1,2,3,"...."`
`rArr S = 1/(n+1)(.^(n+1)C_(2)+.^(n+1)C_(4)+.^(n+1)C_(6)+"....")`
` = (1)/(n+1)[(.^(n+1)C_(0) + .^(n+1)C_(2) + .^(n+1)C_(4) +"....")-.^(n+1)C_(0)] = (2^(n)-1)/(n+1)`.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Prove that (C_1)/1-(C_2)/2+(C_3)/3-(C_4)/4++((-1)^(n-1))/n C_n=1+1/2+1/3++1/ndot

If (1+x)^n=sum_(r=0)^n^n C_r , show that C_0+(C_1)/2++(C_n)/(n+1)=(2^(n+1)-1)/(n+1) .

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

Prove that ^n C_1(^n C_2)(^n C_3)^3(^n C_n)^nlt=((2^n)/(n+1))^(n+1_C()_2),AAn in Ndot

Prove that (^n C_0)/1+(^n C_2)/3+(^n C_4)/5+(^n C_6)/7+.....+dot=(2^n)/(n+1)dot

Prove that n C_0+^n C_3+^n C_6+=1/3(2^n+2cos(npi)/3) .

Prove that .^(n)C_(0) - ^(n)C_(1) + .^(n)C_(2)- ^(n)C_(3) + "…" + (-1)^(r) + .^(n)C_(r) + "…" = (-1)^(r ) xx .^(n-1)C_(r ) .

Prove that (1^(2))/(3).^(n)C_(1)+(1^(2) + 2^(2))/(7).^(n)C_(2)+(1^(2)+2^(2)+3^(2))/(7).^(n)C_(3)+"...." +(1^(2)+2^(3)+"....."+n^(2))/(2n+1).^(n)C_(n) = (n(n+3))/(6)2^(n-2) .

Prove that .^(2n)C_(n) = ( 2^(n) xx 1 xx 3 xx …(2n-1))/(n!)

If C_(r) = .^(n)C_(r) then prove that (C_(0) + C_(1)) (C_(1) + C_(2)) "….." (C_(n-1) + C_(n)) = (C_(1)C_(2)"…."C_(n-1)C_(n))(n+1)^(n)//n!