Home
Class 12
MATHS
Prove that sum(r=1)^n(-1)^(r-1)(1+1/2+1...

Prove that `sum_(r=1)^n(-1)^(r-1)(1+1/2+1/3++1/r)^n C_r=1/n` .

Text Solution

Verified by Experts

`sum(-1)^(r-1).^(n)C_(r)(1/1+1/2+1/3+"...."+1/r)`
`=sum((-1)^(r-1).^(n)C_(r)underset(0)overset(1)int(1+x+x^(2)+"....."+x^(r-1))dx)`
`=sum(-1)^(r-1)..^(n)C_(r)underset(0)overset(1)int((1-x^(r))/(1-x))dx`
`= underset(0)overset(1)intunderset(r=1)overset(n)sum((-1)^(r-1)..^(n)C_(r)-(-1)^(r-1)..^(n)C_(r)x^(r))/(1-x)dx`
`=underset(0)overset(1) int(.^(n)C_(0)+(1-x)^(n) + (1-x)^(n))/(1-x)dx`
`= underset(0)overset(1)int(1-x)^(n-1)dx`
`= [(-(1-x)^(n-1))/(n-1)]_(0)^(1)`
`= 1/n`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Prove that sum_(r=1)^(m-1)(2r^2-r(m-2)+1)/((m-r)^m C_r)=m-1/mdot

Prove that sum_(r=1)^(n) tan^(-1) ((2^(r -1))/(1 + 2^(2r -1))) = tan^(-1) (2^(n)) - (pi)/(4)

Prove that sum_(r=1)^k(-3)^(r-1)^(3n)C_(2r-1)=0,w h e r ek=3n//2 and n is an even integer.

Prove that sum_(r=0)^n(-1)^r^n C_r[1/(2^r)+3/(2^(2r))+7/(2^(3r))+(15)/(2^(4r))+ u ptomt e r m s]=(2^(m n)-1)/(2^(m n)(2^n-1))

The value of sum_(r=1)^(n)(-1)^(r-1)((r )/(r+1))*^(n)C_(r ) is

Prove that (r+1)^n C_r-r^n C_r+(r-1)^n C_2-^n C_3++(-1)^r^n C_r = (-1)^r^(n-2)C_rdot

Prove that sum_(r=0)^n^n C_r(-1)^r[i^r+i^(2r)+i^(3r)+i^(4r)]=2^n+2^(n/2+1)cos(npi//4),w h e r ei=sqrt(-1)dot

Prove that sum_(r=0)^ssum_(s=1)^n^n C_s^ s C_r=3^n-1.

Prove that (3!)/(2(n+3))=sum_(r=0)^n(-1)^r((^n C_r)/(^(r+3)C_r))

If A_1, A_2, , A_(2n-1)a r en skew-symmetric matrices of same order, then B=sum_(r=1)^n(2r-1)(A^(2r-1))^(2r-1) will be symmetric skew-symmetric neither symmetric nor skew-symmetric data not adequate