Home
Class 12
MATHS
Prove that (3!)/(2(n+3))=sum(r=0)^n(-1)^...

Prove that `(3!)/(2(n+3))=sum_(r=0)^n(-1)^r((^n C_r)/(^(r+3)C_r))`

Text Solution

Verified by Experts

`underset(r=0)overset(n)sum(-1)^(r ) ((.^(n)C_(r))/(.^(r+3)C_(3)))`
`= underset(r=0)overset(n)sum(-1)^(r)(n!)/((n-r)!r!)(3!r!)/((r+3)!)`
`= 3!underset(r=0)overset(n)sum(-1)^(r) (n!)/((n-r)!(r+3!))`
`=(3!)/((n+1)(n+2)(n+3))underset(r=0)overset(n)sum(-1)^(r).^(n+3)C_(r+3)`
` = - (3!)/((n+1)(n+2)(n+3))underset(r=0)overset(n)sum(-1)^(r+3).^(n+3)C_(r+3)`
`= - (3!)/((n+1)(n+2)(n+3))[-.^(n+3)C_(3) +.^(n+3)C_(4)-"....."+(-1)^(n+3).^(n+3)C_(n+3)]`
`= - (3!)/((n+1)(n+2)(n+3))[(.^(n+3)C_(0)-.^(n+3)C_(1)+.^(n+3)C_(2)-.^(n+3)C_(3)+"...."+(-1)^(n+3).^(n+3)C_(n+3))-(.^(n+3)C_(0)-.^(n+3)C_(1)+.^(n+3)C_(2))]`
`- (3!)/((n+1)(n+2)(n+3))[(1-1)^(n+3)-(1-(n+3))-((n+3)(n+2))/(2)]`
`= (3!)/((n+1)(n+2)(n+3))[1-n-3+((n+3)(n+2))/(2)]`
`= (3!)/((n+1)(n+2)(n+3)) ((n^(2)+3n+2))/(2)`
`= (3!)/(2(n+3))`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Prove that sum_(r=0)^n(-1)^r^n C_r[1/(2^r)+3/(2^(2r))+7/(2^(3r))+(15)/(2^(4r))+ u ptomt e r m s]=(2^(m n)-1)/(2^(m n)(2^n-1))

Find the sum sum_(r=1)^n r^2(^n C_r)/(^n C_(r-1)) .

Prove that sum_(r=1)^n(-1)^(r-1)(1+1/2+1/3++1/r)^n C_r=1/n .

Prove that sum_(r=0)^(2n)r(.^(2n)C_r)^2=n^(4n)C_(2n) .

Find the sum of sum_(r=1)^n(r^n C_r)/(n C_(r-1) .

Prove that sum_(r=0)^ssum_(s=1)^n^n C_s^ s C_r=3^n-1.

Prove that sum_(r=0)^n^n C_r(-1)^r[i^r+i^(2r)+i^(3r)+i^(4r)]=2^n+2^(n/2+1)cos(npi//4),w h e r ei=sqrt(-1)dot

Probability if n heads in 2n tosses of a fair coin can be given by prod_(r=1)^n((2r-1)/(2r)) b. prod_(r=1)^n((n+r)/(2r)) c. sum_(r=0)^n((^n C_r)/(2^n)) d. (sumr=0n(^n C_r)^2)/(sumr=0 2n(^(2n)C_r)^)

Prove that sum_(r=0)^n 3^r n Cundersetr = 4^n .