Home
Class 12
MATHS
Prove that ^n C0^(2n)Cn-^n C1^(2n-1)Cn+^...

Prove that `^n C_0^(2n)C_n-^n C_1^(2n-1)C_n+^n C_2xx^(2n-2)C_n++(-1)^n^n C_n^n C_n=1.`

Text Solution

Verified by Experts

We know that
`.^(2n)C_(n) =` Coefficient of `x^(n)` in `(1+x)^(2n)`
`.^(2n-1)C_(n) =` Coefficient of `x^(n)` in `(1+x)^(2n-1)`
`.^(2n-2)C_(n) =` Coefficient of `x^(n)` in `(1+x)^(2n-2)`
`.^(2n-3)C_(n) =` Coefficient of `x^(n)` in `(1+x)^(2n-3)`
`.^(n)C_(n) =` Coefficient of `x^(n)` in `(1+x)^(n)`
Thus, we have
`.^(n)C_(0).^(2n)C_(n)-.^(n)C_(1).^(2n-1)C_(n)+.^(n)C_(2).^(2n-2)C_(n)+"...."+(-1)^(n).^(n)C_(n).^(n)C_(n)`
= Coefficient of `x^(n)` in `[C_(0)(1+x)^(2n)-C_(1)(1+x)^(2n-1)+C_(2)(1+x)^(2n-2)-C_(3)(1+x)^(2n-3)+"...."+(-1)^(n)C_(n)(1+x)^(n)]`
`=` Coefficient of `x^(m)` in `(1+x)^(n)[C_(0)(1+x)^(n)-C_(1)(1+x)^(n-1)+C_(2)(1+x)^(n-2)-C_(3)(1+x)^(n-3)+"......"+(-1)^(n)C_(n)]`
`=` Coefficient of `x^(n)` in `(1+x)^(n)[(1+x)-1]^(n)`
`=` Coefficient of `x^(n)` in `(1+x)^(n)x^(n)`
`= 1`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Prove that ^n C_0 ^(2n)C_n- ^n C_1 ^(2n-2)C_n+ ^n C_2^(2n-4)C_n-=2^ndot

Prove that ^n C_0^n C_0-^(n+1)C_1^n C_1+^(n+2)C_2^n C_2-=(-1)^ndot

Prove that ^m C_1^n C_m-^m C_2^(2n)C_m+^m C_3^(3n)C_m-=(-1)^(m-1)n^mdot

Prove that "^n C_r+^(n-1)C_r+...+^r C_r=^(n+1)C_(r+1) .

Prove that (r+1)^n C_r-r^n C_r+(r-1)^n C_2-^n C_3++(-1)^r^n C_r = (-1)^r^(n-2)C_rdot

Prove that ""^(n)C_r + ""^(n)C_(r-1) = ""^(n+1)C_r

Prove that C_(0)^(2) + C_(1)^(2) + C_(2)^(2) +…+C_(n)^(2) = (2n!)/(n!)^(2)

Prove that n C_0+^n C_3+^n C_6+=1/3(2^n+2cos(npi)/3) .

If (18 x^2+12 x+4)^n=a_0+a_(1x)+a2x2++a_(2n)x^(2n), prove that a_r=2^n3^r(^(2n)C_r+^n C_1^(2n-2)C_r+^n C_2^(2n-4)C_r+) .

Using binomial theorem (without using the formula for ^n C_r ) , prove that "^n C_4+^m C_2-^m C_1^n C_2 = ^m C_4-^(m+n)C_1^m C_3+^(m+n)C_2^m C_2-^(m+n)C_3^m C_1+^ (m+n)C_4dot