Home
Class 12
MATHS
Prove that ^m C1^n Cm-^m C2^(2n)Cm+^m C3...

Prove that `^m C_1^n C_m-^m C_2^(2n)C_m+^m C_3^(3n)C_m-=(-1)^(m-1)n^mdot`

Text Solution

Verified by Experts

`.^(m)C_(1).^(n)C_(m)-.^(m)C_(2).^(2n)C_(3)+.^(m)C_(3).^(3n)C_(m)-"...."+(-1)^(m-1).^(m)C_(m).^(mn)C_(m)`
`= "Coefficient of" x^(m) " in"`
`.^(m)C_(1)(1+x)^(n)-.^(m)C_(2)(1+x)^(2n)+.^(m)C_(3)(1+x)^(3n)-"...."+(-1)^(m-1).^(m)C_(m)(1+x)^(mn)`
`=` Coefficient of `x^(m)` in
`.^(m)C_(0) - [.^(m)C_(0) - .^(m)C_(1)(1+x)^(n)+.^(m)C_(2)(1+x)^(2n)-"...."+(-1)^(m).^(m)C_(m)(1+x)^(mn)]`
`=` Coefficient of `x^(m)` in `[1-{1-(1+x)^(n)}^(m)]`
`=` Coefficient of `x^(m)` in `[1-{-nx-.^(n)C_(2)x^(2)-.^(n)C_(3)x^(3)-"......"-.^(n)C_(n)x^(n)}^(m)]`
`= - (-n)^(m)`
`= (-1)^(m-1)n^(m)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Prove that ^n C_0 ^(2n)C_n- ^n C_1 ^(2n-2)C_n+ ^n C_2^(2n-4)C_n-=2^ndot

Prove that ^n C_0^n C_0-^(n+1)C_1^n C_1+^(n+2)C_2^n C_2-=(-1)^ndot

Prove that "^n C_0^(2n)C_n-^n C_1^(2n-1)C_n+^n C_2xx^(2n-2)C_n++(-1)^n^n C_n^n C_n=1.

Using binomial theorem (without using the formula for ^n C_r ) , prove that "^n C_4+^m C_2-^m C_1^n C_2 = ^m C_4-^(m+n)C_1^m C_3+^(m+n)C_2^m C_2-^(m+n)C_3^m C_1+^ (m+n)C_4dot

Prove that ^n C_1(^n C_2)(^n C_3)^3(^n C_n)^nlt=((2^n)/(n+1))^(n+1_C()_2),AAn in Ndot

Prove that n C_0+^n C_3+^n C_6+=1/3(2^n+2cos(npi)/3) .

Prove that .^(n)C_(0) - ^(n)C_(1) + .^(n)C_(2)- ^(n)C_(3) + "…" + (-1)^(r) + .^(n)C_(r) + "…" = (-1)^(r ) xx .^(n-1)C_(r ) .

Prove that .^(n)C_(1) + 2 .^(n)C_(2) + 3 .^(n)C_(3) + "…." + n . ^(n)C_(n) = n 2^(n-1) .

Prove that sum_(r=1)^(m-1)(2r^2-r(m-2)+1)/((m-r)^m C_r)=m-1/mdot

The value of determinant |1 1 1^m C_1^(m+1)C_1^(m+2)C_1^m C_2^(m+1)C_2^(m+2)C_2| is equal to 1 b. -1 c. 0 d. none of these