Home
Class 12
MATHS
If (18 x^2+12 x+4)^n=a0+a(1x)+a2x2++a(2n...

If `(18 x^2+12 x+4)^n=a_0+a_(1x)+a2x2++a_(2n)x^(2n),` prove that `a_r=2^n3^r(^(2n)C_r+^n C_1^(2n-2)C_r+^n C_2^(2n-4)C_r+)` .

Text Solution

Verified by Experts

`(18x^(2)+12x+4)^(n) = 2^(n)[2+9x^(2)+6x]^(n)`
Now, `a_(r )` is coefficient of `x^(r )` in `2^(n) [(3x+1)^(2)+1]^(n)`. Hence
`a_(r) =` Coefficient of `x^(r )2^(n)[.^(n)C_(0)(3x+1)^(2n)+.^(n)C_(1)(3x+1)^(2n-2) + .^(n)C_(2)(3x+1)^(2n-4)+"…."+.^(n)C_(r )(3x+1)^(2n-2r)+"....."]`
or `a_(r)=2^(n)[.^(n)C_(0)3^(r).^(2n)C_(r)+.^(n)C_(1)3^(r).^(2n-2)C_(r)+.^(n)C_(2)3^(r).^(2n-4)C_(r)+"...."]`
`= 2^(n)3^(r)[.^(n)C_(0).^(2n)C_(r)+.^(n)C_(1).^(2n-2)C_(r)+.^(n)C_(2).^(2n-4)C_(r)+"...."]`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Prove that ^n C_0 ^(2n)C_n- ^n C_1 ^(2n-2)C_n+ ^n C_2^(2n-4)C_n-=2^ndot

Prove that sum_(r=0)^(2n)r(.^(2n)C_r)^2=n^(4n)C_(2n) .

Prove that ^n C_0^n C_0-^(n+1)C_1^n C_1+^(n+2)C_2^n C_2-=(-1)^ndot

Prove that ""^(n)C_r + ""^(n)C_(r-1) = ""^(n+1)C_r

Prove that "^n C_r+^(n-1)C_r+...+^r C_r=^(n+1)C_(r+1) .

Prove that "^n C_0^(2n)C_n-^n C_1^(2n-1)C_n+^n C_2xx^(2n-2)C_n++(-1)^n^n C_n^n C_n=1.

If (1+x+x^2)^n=a_0+a_1x+a_2x^2++a_(2n)x_(2n), find the value of a_0+a_6++ ,n in Ndot

Prove that sum_(r=0)^n^n C_rsinr xcos(n-r)x=2^(n-1)sin(n x)dot

Prove that (3!)/(2(n+3))=sum_(r=0)^n(-1)^r((^n C_r)/(^(r+3)C_r))