Home
Class 12
MATHS
Prove that lim(xrarr0) ((1+x)^(n) - 1)/(...

Prove that `lim_(xrarr0) ((1+x)^(n) - 1)/(x) = n`.

Text Solution

Verified by Experts

`underset(x=0)"lim"((1-x)^(n)-1)/(x)`
`= underset(xrarr0)"lim"([1+nx+(n(n-1))/(2!)x^(2)+(n(n-1)(n-2))/(3!)x^(3)+"....."]-1)/(x)`
`= underset(xrarr0)"lim"[n+(n(n-1))/(2!)x+(n(n-1)(n-2))/(3!)x^(2)+"..."]`
`= n+0+0+"...."`
`= n`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Prove that [lim_(xrarr0) (sinx.tanx)/(x^(2))]=1 ,where [.] represents greatest integer function.

Evaluate: lim_(xrarr0)x^x

If f(x)=lim_(nrarroo) (cos(x)/(sqrtn))^(n) , then the value of lim_(xrarr0) (f(x)-1)/(x) is

What is lim_(xrarr0)[e^(x^2]-1]/(x^2)

Evaluate the following limits in lim_(xrarr0)((x+1)^(5)-1)/(x)

Evaluate : lim_(xrarr0)(tanx)/(x)

Evaluate lim_(xrarr1)(x^10 -1)/(x^5 -1)

lim_(xrarr0)(1+sinx)^(3cosecx) is :

Find lim_(xrarr0)(xe^x -sin2x)/(2x)

Using the I'Hopital Rule prove that, underset(xrarr0^(+))lim(1+x)^((1)/(x))=e