Home
Class 12
MATHS
Prove that .^(n)C(0) - ^(n)C(1) + .^(n)C...

Prove that `.^(n)C_(0) - ^(n)C_(1) + .^(n)C_(2)- ^(n)C_(3) + "…" + (-1)^(r) + .^(n)C_(r) + "…" = (-1)^(r ) xx .^(n-1)C_(r )`.

Text Solution

Verified by Experts

`.^(n)C_(0) - .^(n)C_(1) + .^(n)C_(2) - .^(n)C_(3)+"…"+(-1)^(r ) xx ,^(n)C_(r ) + "…"`
Coeffciint of `x^(r )` in
`(.^(n)C_(0) - .^(n)C_(1)x + .^(n)C_(2)x^(2) - .^(n)C_(3)x^(3) + "….." + (-1)^(r) xx .^(n)C_(r) + "…..") xx (1+x + x^(2)+x^(3)+"…."+x^(r ) + "....")`
`=` Coefficient of `x^(r)` in `(1-x)^(n)(1-x)^(-1)`
`=` Coefficient of `x^(r )` in `(1-x)^(n-1)`
`= (-1)^(r) xx .^(n-1)C_(r )`.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Prove that ""^(n)C_r + ""^(n)C_(r-1) = ""^(n+1)C_r

Prove that .^(n)C_(0) +5 xx .^(n)C_(1) + 9 xx .^(n)C_(2) + "…." + (4n+1) xx .^(n)C_(n) = (2n+1) 2^(n) .

Prove that .^(n)C_(1) + 2 .^(n)C_(2) + 3 .^(n)C_(3) + "…." + n . ^(n)C_(n) = n 2^(n-1) .

Find the sum 1.^(n)C_(0) + 3 .^(n)C_(1) + 5.^(n)C_(2) + "….." + (2n+1).^(n)C_(n) .

If "^(n)C_(0)-^(n)C_(1)+^(n)C_(2)-^(n)C_(3)+...+(-1)^(r )*^(n)C_(r )=28 , then n is equal to ……

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

Prove that .^(2n)C_(n) = ( 2^(n) xx 1 xx 3 xx …(2n-1))/(n!)

Prove that sum_(r=0)^(2n)r(.^(2n)C_r)^2=n^(4n)C_(2n) .

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)

.^((n-1)C_(r) + ^((n-1)) C_((r-1)) is