Home
Class 12
MATHS
Find the value of .^(20)C(0) xx .^(13)...

Find the value of
`.^(20)C_(0) xx .^(13)C_(10) - .^(20)C_(1) xx .^(12)C_(9) + .^(20)C_(2) xx .^(11)C_(8) - "……" + .^(20)C_(10)`.

Text Solution

Verified by Experts

`.^(20)C_(0) xx .^(13)C_(10) - .^(20)C_(1) xx .^(12)C_(9) + .^(20)C_(2) xx .^(11)C_(8) -"…." + .^(20)C_(10)`
`=` Coefficient of `x^(10)` in
`(.^(20)C_(0) - .^(20)C_(1)x + .^(20)C_(2)x^(2) - .^(20)C_(3)x^(3) + "…..")`
`(1+.^(4)C_(1)x + .^(5)C_(2)x^(2)+.^(6)C_(3)x^(3)+".....")`
`=` Coefficient of `x^(10)` in `(1-x)^(20)(1-x)^(-4)`
`=` Coefficient of `x^(10)` in `(1-x)^(16)`
`= .^(16)C_(10)`.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

The value of .^(40)C_(0) xx .^(100)C_(40) - .^(40)C_(1) xx .^(99)C_(40) + .^(40)C_(2) xx .^(98)C_(40) "……." + .^(40)C_(40) xx .^(60)C_(40) is equal to "____" .

The value of .^(n)C_(0) xx .^(2n)C_(r) - .^(n)C_(1)xx.^(2n-2)C_(r)+.^(n)C_(2)xx.^(2n-4)C_(r)+"…." is equal to

The value of (.^(21)C_(1) - .^(10)C_(1)) + (.^(21)C_(2) - .^(10)C_(2)) + (.^(21)C_(3) - .^(10)C_(3)) + (.^(21)C_(4) - .^(10)C_(4)) + … + (.^(21)C_(10) - .^(10)C_(10)) is

Find the value of (.^(10)C_(10))+(.^(10)C_(0)+.^(10)C_(1))+(.^(10)C_(0)+.^(10)C_(1)+.^(10)C_(2))+"...."+(.^(10)C_(0)+.^(10)C_(1)+.^(10)C_(2)+"....." + .^(10)C_(9)) .

If a= .^(20)C_(0) + .^(20)C_(3) + .^(20)C_(6) + .^(20)C_(9) + "…..", b = .^(20)C_(1) + .^(20)C_(4) + .^(20)C_(7) + "……"' and c = .^(20)C_(2) + .^(20)C_(5) + .^(20)C_(8) + "…..", then Value of (a-b)^(2) + (b-c)^(2) + (c-a)^(2) is

If a= .^(20)C_(0) + .^(20)C_(3) + .^(20)C_(6) + .^(20)C_(9) + "…..", b = .^(20)C_(1) + .^(20)C_(4) + .^(20)C_(7) + "……"' and c = .^(20)C_(2) + .^(20)C_(5) + .^(20)C_(8) + "…..", then Value of a^(3) + b^(3) + c^(3) - 3abc is

Prove that .^(15)C_(3) + 2 xx .^(15)C_(4) + .^(15)C_(5) = .^(17)C_(5)

The value of r for which .^(20)C_(r ), .^(20)C_(r - 1) .^(20)C_(1) + .^(20)C_(2) + …… + .^(20)C_(0) .^(20)C_(r ) is maximum, is

Find the value of ^20 C_0-(^(20)C_1)/2+(^(20)C_2)/3-(^(20)C_3)/4+dot

The value of 2xx.^(n)C_(1) + 2^(3) xx .^(n)C_(3) + 2^(5) + "…." is