Home
Class 12
MATHS
Given, sn=1+q+q^2++q^n ,Sn=1+(q+1)/2+((q...

Given, `s_n=1+q+q^2++q^n ,S_n=1+(q+1)/2+((q+1)/2)^2++((q+1)/2)^n ,q!=1` prove that `^n+1C_1+^(n+1)C_2s_1+^(n+1)C_3s_2++^(n+1)C_(n+1)s_n2^n S_ndot`

Text Solution

Verified by Experts

`s_(n)` is in geometric progression, hence,
`s_(n) = (q^(n+1) -1)/(q-1) . q ne 1`
Also, `S_( n)` is geometric progression.
`:. S_(n) = (((q+1)/(2))^(n+1)-1)/(((q+1)/(2))-1) = ((q+1)^(n+1).-2^(n+1))/(2^(n)(q-1))`
Consider `.^((n+1))C_(1)+.^((n+1))C_(2)s_(1)+.^((n+1))C_(3)s_(3)+"....."+.^((n+1))C_(n+1)s_(n)`
`.^((n+1))C_(1)((q-1)/(q-1))+.^((n+1))C_(2)(q^(2)-1)(q-1)+"......"+.^((n+1))C_(n+1)(q^(n+1)-1)/(q-1)`
`=(1/(q-1))[{.^((n+1))C_(1)q+.^((n+1))C_(2)q^(2)+"...."+.^((n+1))C_(n+1)q^(n+1)}-{.^((n+1))C_(1)+.^((n+1))C_(2)+"....."+.^((n+1))C_(n+1)}]`
`= ((1)/(q-1)) [{(1+q)^(n+1)-1}-{2^(n+1)-1}]`
Since
`{{:((1+q)^(n+1)=.^(n+1)C_(0)+.^((n+1))C_(1)q+.^((n+1))C_(2)q^(2)+"...."+.^((n+1))C_(n+1)q^(n+1)),(" "2^(n-1)=.^((n+1))C_(0)+.^((n+1))C_(1)+"...."+.^((n+1))C_(n+1)):}}`
`rArr ((1)/(q-1))[(1+q)^(n+1)-2^(n+1)-2^(n+1)]= ((1+q)^(n+1)-2^(n+1))/(q-1)`
Thus, `.^((n+1))C_(1)+.^((n+1))C_(2)s_(1)+"....."+.^((n+1))C_(n+1)s_(n) = ((1+q)^(n+1)-2^(n+1))/(q-1)`
Therefore, `.^(n+1)C_(1) + .^((n+1))C_(2)s_(1) + "....."+.^((n+1))C_(n+1)s_(n+1)=2^(n)S_(n)` (Using (1))
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Given, s_n=1+q+q^2+.....+q^n ,S_n=1+(q+1)/2+((q+1)/2)^2+...+((q+1)/2)^n ,q!=1 prove that "^(n+1)C_1+^(n+1)C_2s_1+^(n+1)C_3s_2+......+^(n+1)C_(n+1)s_n=2^n S_ndot

Prove that ^n C_0 ^(2n)C_n- ^n C_1 ^(2n-2)C_n+ ^n C_2^(2n-4)C_n-=2^ndot

Prove that ^n C_0^n C_0-^(n+1)C_1^n C_1+^(n+2)C_2^n C_2-=(-1)^ndot

Prove that ^m C_1^n C_m-^m C_2^(2n)C_m+^m C_3^(3n)C_m-=(-1)^(m-1)n^mdot

Prove that "^n C_0^(2n)C_n-^n C_1^(2n-1)C_n+^n C_2xx^(2n-2)C_n++(-1)^n^n C_n^n C_n=1.

Prove that .^(2n)C_(n) = ( 2^(n) xx 1 xx 3 xx …(2n-1))/(n!)

Prove that ^n C_1(^n C_2)(^n C_3)^3(^n C_n)^nlt=((2^n)/(n+1))^(n+1_C()_2),AAn in Ndot

Prove that .^(n)C_(1) + 2 .^(n)C_(2) + 3 .^(n)C_(3) + "…." + n . ^(n)C_(n) = n 2^(n-1) .

Prove that sum_(r=0)^ssum_(s=1)^n^n C_s^ s C_r=3^n-1.

Let S_n=1+q+q^2 +?+q^n and T_n =1+((q+1)/2)+((q+1)/2)^2+?+((q+1)/2)^n If alpha T_100=^101C_1 +^101C_2 xS_1 +^101C_101 xS_100, then the value of alpha is equal to (A) 2^99 (B) 2^101 (C) 2^100 (D) -2^100