Home
Class 12
MATHS
Prove that (.^(n)C(1)sin2x+.^(n)C(2)sin4...

Prove that `(.^(n)C_(1)sin2x+.^(n)C_(2)sin4x+.^(n)C_(3)sin6x+"…..")/(1+.^(n)C_(1)cos2x+.^(n)C_(2)cos4x+.^(n)C_(3)cos 6x+"……")`

Text Solution

Verified by Experts

L.H.S. `=(underset(r=0)overset(n)sum.^(n)C_(r)sin2rx)/(underset(r=0)overset(n)sum.^(n)C_(r)cos2x)" "(1)`
`0=(underset(r=0)overset(n)sum.^(n)C_(n-r)sin2(n-r)x)/(underset(r=0)overset(n)sum.^(n)C_(n-r)cos2(n-r)x)`
`=(underset(r=0)overset(n)sum.^(n)C_(r)sin(2n-2r)x)/(underset(r=0)overset(n)sum.^(n)C_(r)cos(2n-2r)x)" "(2)`
`=(underset(r=0)overset(n)sum.^(n )C_(r)sin2rx+underset(r=0)overset(n)sum.^(n)C_(r)sin(2n-2r)x)/(underset(r=0)overset(n)sum.^(n)C_(r)cos2rx+underset(r=0)overset(n)sum.^(n)C_(r)cos(2n-2r)x)`.
(Using `a/b = c/d = (a+c)/(b+d)` and using (1) and (2))
`= (underset(r=0)overset(n)sum.^(n)C_(r)[sin2rx+sin(2n-2r)x])/(underset(r=0)overset(n)sum.^(n)C_(r)[cos2rx+cos(2n-2r)x])`
`= (2sin nx underset(r=0)overset(n)sum.^(n)C_(r)cos(2r-n)x)/(2cos nx underset(r=0)overset(n)sum.^(n)C_(r)cos(2r-n)x) = tan nx`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Prove that .^(n)C_(1) + 2 .^(n)C_(2) + 3 .^(n)C_(3) + "…." + n . ^(n)C_(n) = n 2^(n-1) .

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

Prove that .^(n)C_(0) +5 xx .^(n)C_(1) + 9 xx .^(n)C_(2) + "…." + (4n+1) xx .^(n)C_(n) = (2n+1) 2^(n) .

Find the sum 1.^(n)C_(0) + 3 .^(n)C_(1) + 5.^(n)C_(2) + "….." + (2n+1).^(n)C_(n) .

Prove that .^(n)C_(0) - ^(n)C_(1) + .^(n)C_(2)- ^(n)C_(3) + "…" + (-1)^(r) + .^(n)C_(r) + "…" = (-1)^(r ) xx .^(n-1)C_(r ) .

Prove that (sin4x+sin2x)/(cos4x+cos2x)=tan3x

Prove that .^(2n)C_(n) = ( 2^(n) xx 1 xx 3 xx …(2n-1))/(n!)

In .^(2n)C_(3) :.^(n)C_(3) = 11 : 1 then n is

Prove that sum_(r=0)^n^n C_rsinr xcos(n-r)x=2^(n-1)sin(n x)dot

the roots of the equations |{:(.^(x)C_(r),,.^(n-1)C_(r),,.^(n-1)C_(r-1)),(.^(x+1)C_(r),,.^(n)C_(r),,.^(n)C_(r-1)),(.^(x+2)C_(r),,.^(n+1)C_(r),,.^(n+1)C_(r-1)):}|=0