Home
Class 12
MATHS
Prove that sum(r=0)^n(-1)^r^n Cr[1/(2^r...

Prove that `sum_(r=0)^n(-1)^r^n C_r[1/(2^r)+3/(2^(2r))+7/(2^(3r))+(15)/(2^(4r))+ u ptomt e r m s]=(2^(m n)-1)/(2^(m n)(2^n-1))`

Text Solution

Verified by Experts

`underset(r=0)overset(n)sum(-1)^(r)xx.^(n)C_(r)(1/(2^(r))+(3/4)^(r)+(7/8)^(r)+".....m terms")`
`= underset(r=0)overset(n)sum.^(n)C_(r)((-1)/(2))^(r)+underset(r=0)overset(n)sum.^(n)C_(r)((-3)/(9))^(n)+underset(r=0)overset(n)sum.^(n)C_(r)((-7)/(8))^(r)+".......m terms"`.
`=(1-(1)/(2))^(n) + (1-3/4)^(n) + (1-7/8)^(n)+(1-15/16)^(n)+"....."m` terms a
`= ((1)/(2^(n))[1-(1/(2^(n)))^(m)])/(1-1/(2^(n)))= (2^(mn)-1)/(2^(mn)(2^(n)-1))`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.3|7 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Comprehension|11 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Prove that (3!)/(2(n+3))=sum_(r=0)^n(-1)^r((^n C_r)/(^(r+3)C_r))

Prove that sum_(r=0)^(2n)r(.^(2n)C_r)^2=n^(4n)C_(2n) .

Prove that sum_(r=0)^ssum_(s=1)^n^n C_s^ s C_r=3^n-1.

Prove that sum_(r=1)^n(-1)^(r-1)(1+1/2+1/3++1/r)^n C_r=1/n .

The value of sum_(r=0)^(3n-1)(-1)^r 6nC_(2r+1)3^r is

Prove that sum_(r=1)^(n) tan^(-1) ((2^(r -1))/(1 + 2^(2r -1))) = tan^(-1) (2^(n)) - (pi)/(4)

Prove that sum_(r=1)^(m-1)(2r^2-r(m-2)+1)/((m-r)^m C_r)=m-1/mdot

Prove that sum_(r=0)^n^n C_rsinr xcos(n-r)x=2^(n-1)sin(n x)dot

Find the sum sum_(r=1)^n r^2(^n C_r)/(^n C_(r-1)) .

Find the sum of sum_(r=1)^n(r^n C_r)/(n C_(r-1) .