Home
Class 12
MATHS
Prove that .^(n)C(0) +5 xx .^(n)C(1) + 9...

Prove that `.^(n)C_(0) +5 xx .^(n)C_(1) + 9 xx .^(n)C_(2) + "…." + (4n+1) xx .^(n)C_(n) = (2n+1) 2^(n)`.

Text Solution

Verified by Experts

`S = .^(n)C_(0) + 5 xx .^(n)C_(1)+9xx.^(n)C_(2)+"....."(4n-3)xx.^(n)C_(n-1)+(4n+1)xx.^(n)C_(n)"......"(1)`
`:. S = (4n+1).^(n)C_(n)+(4n-3).^(n)C_(n-1)+"...."+5.^(n)C_(1)+.^(n)C_(n)"....."(2)`
Adding (1) and (2), we get
`2S = (4n+2)(.^(n)C_(0)+.^(n)C_(1)+"....."+.^(n)C_(n-1)+.^(n)C_(n))`
`= (4n+2)2^(n)`
`rArr S = (2n+1)2^(n)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.5|8 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.6|10 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.3|7 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Prove that .^(n)C_(1) + 2 .^(n)C_(2) + 3 .^(n)C_(3) + "…." + n . ^(n)C_(n) = n 2^(n-1) .

Find the sum 1.^(n)C_(0) + 3 .^(n)C_(1) + 5.^(n)C_(2) + "….." + (2n+1).^(n)C_(n) .

Prove that .^(n)C_(0) - ^(n)C_(1) + .^(n)C_(2)- ^(n)C_(3) + "…" + (-1)^(r) + .^(n)C_(r) + "…" = (-1)^(r ) xx .^(n-1)C_(r ) .

Prove that .^(2n)C_(n) = ( 2^(n) xx 1 xx 3 xx …(2n-1))/(n!)

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

Prove that ""^(n)C_r + ""^(n)C_(r-1) = ""^(n+1)C_r

If ""^(n)C_(8)=""^(n)C_(2) , find ""^(n)C_(2) .

The value of 2xx.^(n)C_(1) + 2^(3) xx .^(n)C_(3) + 2^(5) + "…." is

Prove that (.^(n)C_(1)sin2x+.^(n)C_(2)sin4x+.^(n)C_(3)sin6x+"…..")/(1+.^(n)C_(1)cos2x+.^(n)C_(2)cos4x+.^(n)C_(3)cos 6x+"……")

In .^(2n)C_(3) :.^(n)C_(3) = 11 : 1 then n is