Home
Class 12
MATHS
Find the value of ^4n C0+^(4n)C4+^(4n)C8...

Find the value of `^4n C_0+^(4n)C_4+^(4n)C_8++""^(4n)C_(4n)` .

Text Solution

Verified by Experts

The correct Answer is:
`2^(4n-2)+(-1)^(n)2^(2n-1)`

We have,
`.^(4n)C_(0) + .^(4n)C_(2)x^(2)+.^(4n)C_(4)x^(4)+"…."+.^(4n)C_(4n)x^(4n)`
`= 1/2[(1+x)^(4n) +(1-x)^(4n)]`
Putting `x = 1` and `x= i`, we get
`.^(4n)C_(0) + .^(4n)C_(2) + .^(4n)C_(4) + "……" + .^(4n)C_(4n)=1/2[2^(4n)]`
and `.^(4n)C_(0) - .^(4n)C_(2) + .^(4n)C_(4) - "....." + .^(4n)C_(4n)`
`= 1/2[(1+i)^(4n)+(1-i)^(4n)]`
Thus, `2[.^(4n)C_(0) + .^(4n)C_(4)+"......"+.^(4n)C_(4n)] = 2^(4n-1) + 1/2[sqrt(2)(cos'(pi)/(4)- isin'(pi)/(4))]^(4n)`
`= 2^(2n) (cosnpi + isin npi)+2^(2n) (cos npi - i sin npi)`
`= 2^(2n+1) cos n pi=2^(2n+1)(-1)^(n)`
`:. 2[.^(4n)C_(0) + .^(4n)C_(4) + "....." + .^(4n)C_(4n)] = 2^(4n-1) + 1/2 2^(2n+1)(-1)^(n)`
`rArr .^(4n)C_(0) + .^(4n)C_(4) + "....." + .^(4n)C_(4n) = 2^(4n-2) + (-1)^(n)2^(2n-1)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.5|8 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.6|10 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.3|7 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

If ""^(n)C_(4)=""^(n)C_(6) find ""^(12)C_(n) .

Find the sum sum_(j=0)^(n) (""^(4n+1)C_(j)+""^(4n+1)C_(2n-j)) .

The value of .^(n)C_(0) xx .^(2n)C_(r) - .^(n)C_(1)xx.^(2n-2)C_(r)+.^(n)C_(2)xx.^(2n-4)C_(r)+"…." is equal to

Find the sum ^n C_0+^n C_4+^n C_8+.......

If ""^(n)C_(9)=""^(n)C_(8) , find ""^(n)C_(17) .

If the value of "^(n)C_(0)+2*^(n)C_(1)+3*^(n)C_(2)+...+(n+1)*^(n)C_(n)=576 , then n is

Find the sum 1.^(n)C_(0) + 3 .^(n)C_(1) + 5.^(n)C_(2) + "….." + (2n+1).^(n)C_(n) .

If ""^(n)C_(8)=""^(n)C_(2) , find ""^(n)C_(2) .

Prove that ^n C_0 ^(2n)C_n- ^n C_1 ^(2n-2)C_n+ ^n C_2^(2n-4)C_n-=2^ndot

Find the sum 3^n C_0-8^n C_1+13^n C_2 - 18^n C_3+..