Home
Class 12
MATHS
Find the sum sum(r=1)^n r^2(^n Cr)/(^n C...

Find the sum `sum_(r=1)^n r^2(^n C_r)/(^n C_(r-1))` .

Text Solution

Verified by Experts

The correct Answer is:
`(n(n+1)(n+2))/(6)`

`t_(r)=r^(2)(.^(n)C_(r))/(.^(n)C_(r)-1)`
`=r^(2)(n-r+1)/(r)`
`=r(n+1-r)`
`=(n+1)r-r^(2)`
`:.` Sum `= (n+1)underset(r=1)overset(n)sumr-underset(r=1)overset(n)sumr^(2)`
`=(n+1)(n(n+1))/(2)-(n(n+1)(2n+1))/(6)`
`= (n(n+1))/(6){3(n+1) - (2n+1)}`
`= (n(n+1)(n+2))/(6)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.6|10 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.7|9 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.4|13 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Find the sum of sum_(r=1)^n(r^n C_r)/(n C_(r-1) .

Find the sum sum_(r=0)^n^(n+r)C_r .

Find the sum sum_(i=0)^r.^(n_1)C_(r-i) .^(n_2)C_i .

Find the sum sum_(r =1)^(oo) tan^(-1) ((2(2r -1))/(4 + r^(2) (r^(2) -2r + 1)))

Find the sum Sigma_(r=1)^(oo)(3n^2+1)/((n^2-1)^3)

Find the sum Sigma_(r=1)^(n) r/((r+1)!) . Also, find the sum of infinite terms.

If p+q=1, then show that sum_(r=0)^n r^2^n C_rp^r q^(n-r)=n p q+n^2p^2dot

Find the sum Sigma_(r=1)^(n) 1/(r(r+1)(r+2)(r+3)) Also,find Sigma_(r=1)^(oo) 1/(r(r+1)(r+2)(r+3))

Prove that sum_(r=0)^ssum_(s=1)^n^n C_s^ s C_r=3^n-1.

Find the sum of the series sum_(r=1)^n rxxr !dot