Home
Class 12
MATHS
Prove that 1-^n C1(1+x)/(1+n x)+^n C2(1+...

Prove that `1-^n C_1(1+x)/(1+n x)+^n C_2(1+2x)/((1+n x)^2)-^n C_3(1+3x)/((1+n x)^3)+.`
.`.....(n+1)terms = 0`

Text Solution

Verified by Experts

`S = 1 - .^(n)C_(1)((1+x)/(1+nx))+.^(n)C_(2)(1+2x)/((1+nx)^(2))+"...."`
`=underset(r=0)overset(n)sum(-1)^(r).^(n)C_(r)((1+rx))/((1+nx)^(r))`
`=underset(r=0)overset(n)sum(-1)^(r)[(.^(n)C_(r))/((1+nx)^(r))+(.^(n)C_(r)rx)/((1+nx)^(r))]`
`= underset(r=0)overset(n)sum.^(n)C_(r)(-(1)/(1+nx))^(r)+xunderset(r=0)overset(n)sum(n..^(n-1)C_(r-1))/((1+nx)^(r)) (-1)^(r)`
`= [1-1/(1+nx)]^(n)-((nx)/(1+nx))underset(r=0)overset(n)sum.^(n-1)C_(r-1)(-(1)/(1+nx))^(r-1)`
`=[1-(1)/(1+nx)]^(n)-((nx)/(1+nx))[1-(1)/(nx)]^(n-1)`
`= [1-(1)/(1+nx)]^(n-1)[1-(1)/(1+nx)-(nx)/(1+x)]=0`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.7|9 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.8|10 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.5|8 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Prove that ^n C_0^n C_0-^(n+1)C_1^n C_1+^(n+2)C_2^n C_2-=(-1)^ndot

Prove that ^n C_1(^n C_2)(^n C_3)^3(^n C_n)^nlt=((2^n)/(n+1))^(n+1_C()_2),AAn in Ndot

Prove that .^(2n)C_(n) = ( 2^(n) xx 1 xx 3 xx …(2n-1))/(n!)

Prove that lim_(xrarr0) ((1+x)^(n) - 1)/(x) = n .

Prove that .^(n)C_(1) + 2 .^(n)C_(2) + 3 .^(n)C_(3) + "…." + n . ^(n)C_(n) = n 2^(n-1) .

Prove that "^n C_0^(2n)C_n-^n C_1^(2n-1)C_n+^n C_2xx^(2n-2)C_n++(-1)^n^n C_n^n C_n=1.

Show that x^(n) =1 + n(1 -1/x) + (n(n+1))/1.2 (1 -1/x)^(2) + ...

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

Prove that .^(n)C_(0) - ^(n)C_(1) + .^(n)C_(2)- ^(n)C_(3) + "…" + (-1)^(r) + .^(n)C_(r) + "…" = (-1)^(r ) xx .^(n-1)C_(r ) .

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)