Home
Class 12
MATHS
Prove that (^n C0)/1+(^n C2)/3+(^n C4)/5...

Prove that `(^n C_0)/1+(^n C_2)/3+(^n C_4)/5+(^n C_6)/7+.....+dot=(2^n)/(n+1)dot`

Text Solution

Verified by Experts

`S = (.^(n)C_(0))/(1)+(.^(n)C_(2))/(3)+(.^(n)C_(4))/(5)+(.^(n)C_(6))/(7)+"….."`
The general term of the series in
`(.^(n)C_(2r))/(2r+1) = (.^(n+1)C_(2r+1))/(n+1)`, where `r = 0,1,2,"….."`
`:. S = (1)/(n+1)[.^(n+1)C_(1)+.^(n+1)C_(3)+.^(n+1)C_(5)+"......."] = (2^(n))/(n+1)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.7|9 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.8|10 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.5|8 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Prove that ^n C_1(^n C_2)(^n C_3)^3(^n C_n)^nlt=((2^n)/(n+1))^(n+1_C()_2),AAn in Ndot

Prove that n C_0+^n C_3+^n C_6+=1/3(2^n+2cos(npi)/3) .

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

Prove that ^n C_0^n C_0-^(n+1)C_1^n C_1+^(n+2)C_2^n C_2-=(-1)^ndot

If n=12 m(m in N), prove that ^n C_0-(^n C_2)/((2+sqrt(3))^2)+(^n C_4)/((2+sqrt(3))^4)-(^n C_6)/((2+sqrt(3))^6)+ddot=((2sqrt(2))/(1+sqrt(3)))^ndot

The value of ("^n C_0)/n + ("^nC_1)/(n+1) + ("^nC_2)/(n+2) +....+ ("^nC_ n)/(2n) is equal to

Prove that ^n C_0 ^(2n)C_n- ^n C_1 ^(2n-2)C_n+ ^n C_2^(2n-4)C_n-=2^ndot

Prove that (C_1)/1-(C_2)/2+(C_3)/3-(C_4)/4++((-1)^(n-1))/n C_n=1+1/2+1/3++1/ndot

Prove that 1-^n C_1(1+x)/(1+n x)+^n C_2(1+2x)/((1+n x)^2)-^n C_3(1+3x)/((1+n x)^3)+. . .....(n+1)terms = 0

Prove that C_(0)^(2) + C_(1)^(2) + C_(2)^(2) +…+C_(n)^(2) = (2n!)/(n!)^(2)