Home
Class 12
MATHS
Find the coefficient of x^n in the polyn...

Find the coefficient of `x^n` in the polynomial `(x+^n C_0)(x+3^n C_1)xx(x+5^n C_2)[x+(2n+1)^n C_n]dot`

Text Solution

Verified by Experts

The correct Answer is:
`(n+1)2^(n)`

Given polynomial is `n +1` degree polynomial.
`(x+.^(n)C_(0))(x+3.^(n)C_(2))(x+5.^(n)C_(2))"....."[x+(2n+1).^(n)C_(n)]`
`= x^(n+1)+a_(1)x^(n)+"...."+a_(n+1)`
Then,
`- (a_(1))/(a_(0))=-.^(n)C_(0)-3.^(n)C_(1)-5.^(n)C_(2)-"....."-(2n+1).^(n)C_(n)`
`rArr a_(1)=.^(n)C_(0)+3.^(n)C_(1)+5.^(n)C_(2)-"......"+(2n+1).^(n)C_(n)`
`= underset(r=0)overset(n)sum.^(n)C_(r)(2r+1)=2underset(r=0)overset(n)sumr^(n)C_(r)+underset(r=0)overset(n)sum.^(n)C_(r)`
`= 2underset(r=0)overset(n)sumn..^(n-1)C_(r-1) + underset(r=0)overset(n)sum.^(n)C_(r)`
`= 2n 2^(n+1) + 2^(n) = (n+1)2^(n)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.7|9 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.8|10 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.5|8 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Find the coefficient of x^n in (1+x/(1!)+(x^2)/(2!)++(x^n)/(n !))^2 .

Find the coefficient of x^k in 1 +(1 +x) +(1 +x)^2+.. +(1+x)^n (0 <=k<=n) .

Find the sum of the coefficients in the expansion of (1+2x+3x^2+ n x^n)^2dot

Prove that the coefficient of x^n in the expansion of 1/((1-x)(1-2x)(1-3x))i s1/2(3^(n+2)-2^(n+3)+1)dot

Find the sum 3^n C_0-8^n C_1+13^n C_2 - 18^n C_3+..

If |x|<1, then find the coefficient of x^n in the expansion of (1+x+x^2+x^3+....)^2dot

Find the sum 1.^(n)C_(0) + 3 .^(n)C_(1) + 5.^(n)C_(2) + "….." + (2n+1).^(n)C_(n) .

Prove that ^n C_0 ^(2n)C_n- ^n C_1 ^(2n-2)C_n+ ^n C_2^(2n-4)C_n-=2^ndot

The coefficient of x^r[0lt=rlt=(n-1)] in lthe expansion of (x+3)^(n-1)+(x+3)^(n-2)(x+2)+(x+3)^(n-3)(x+2)^2++(x+2)^(n-1) is ^n C_r(3^r-2^n) b. ^n C_r(3^(n-r)-2^(n-r)) c. ^n C_r(3^r+2^(n-r)) d. none of these

The coefficient of 1//x in the expansion of (1+x)^n(1+1//x)^n is (n !)/((n-1)!(n+1)!) b. ((2n)!)/((n-1)!(n+1)!) c. ((2n)!)/((2n-1)!(2n+1)!) d. none of these