Home
Class 12
MATHS
Prove that ""^(10)C(2)+2xx^(10)C(3)+^(10...

Prove that `""^(10)C_(2)+2xx^(10)C_(3)+^(10)C_(4)=^(12)C_(4)`

Text Solution

Verified by Experts

`S = .^(10)C_(1)(x-1)^(2).^(10)C_(2)(x-2)^(2)+.^(10)C_(3)(x-3)^(2)+"...."-.^(10)C_(10)(x-10)^(10)`
`= underset(r=1)overset(10)sum(-1)^(r+1).^(10)C_(r)(x-r)^(2)`
`= underset(r=1)overset(10)(-1)^(r+1).^(10)C_(r)(x^(2) - 2xr+r^(2))`
`= underset(r=1)overset(10)sum(-1)^(r+1)C_(r)(x^(2)) - 2x underset(r=1)overset(10)sum(-1)^(r+1).^(10)C_(r)r + underset(r=1)overset(10)sum(-1)^(r+1).^(10)C_(r)r^(2)`
`= x^(2) underset(r=1)overset(10)sum (-1)^(r+1) .^(10)C_(r) - 2x(0) + 0`
`=x^(2)(.^(10)C_(1) - .^(10)C_(2) + .^(10)C_(3)-.^(10)C_(4)+"...."-.^(10)C_(10))`
`= x^(2)(1) = x^(2)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.7|9 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.8|10 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.5|8 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Prove that .^(15)C_(3) + 2 xx .^(15)C_(4) + .^(15)C_(5) = .^(17)C_(5)

The value of (.^(21)C_(1) - .^(10)C_(1)) + (.^(21)C_(2) - .^(10)C_(2)) + (.^(21)C_(3) - .^(10)C_(3)) + (.^(21)C_(4) - .^(10)C_(4)) + … + (.^(21)C_(10) - .^(10)C_(10)) is

The value of "^(12)C_(2)+^(13)C_(3)+^(14)C_(4)+...+^(999)C_(989) is

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

Find the value of .^(20)C_(0) xx .^(13)C_(10) - .^(20)C_(1) xx .^(12)C_(9) + .^(20)C_(2) xx .^(11)C_(8) - "……" + .^(20)C_(10) .

Prove that .^(n)C_(0) +5 xx .^(n)C_(1) + 9 xx .^(n)C_(2) + "…." + (4n+1) xx .^(n)C_(n) = (2n+1) 2^(n) .

Find the value of (.^(10)C_(10))+(.^(10)C_(0)+.^(10)C_(1))+(.^(10)C_(0)+.^(10)C_(1)+.^(10)C_(2))+"...."+(.^(10)C_(0)+.^(10)C_(1)+.^(10)C_(2)+"....." + .^(10)C_(9)) .

The value of .^(n)C_(0) xx .^(2n)C_(r) - .^(n)C_(1)xx.^(2n-2)C_(r)+.^(n)C_(2)xx.^(2n-4)C_(r)+"…." is equal to

If |{:(.^(9)C_(4),.^(9)C_(5),.^(10)C_(r)),(.^(10)C_(6 ),.^(10)C_(7),.^(11)C_(r+2)),(.^(11)C_(8),.^(11)C_(9),.^(12)C_(r+4)):}|=0 , then the value of r is equal to