Home
Class 12
MATHS
Find the sum of the series .^(84)C(4)+6x...

Find the sum of the series `.^(84)C_(4)+6xx.^(84)C_(5)+15xx.^(84)C_(6)+20xx.^(84)C_(7)+15xx.^(84)C_(8)+6xx.^(84)C_(9)+.^(84)C_(10)`.

Text Solution

Verified by Experts

The correct Answer is:
`.^(90)C_(10)`

`.^(84)C_(4) + 6 xx .^(84)C_(5) + 15 xx .^(84)C_(6)+20 xx .^(84)C_(7)+15 xx.^(84)C_(8)+6xx.^(84)C_(9)+.^(84)C_(10)`
`= .^(6)C_(6) xx .^(84)C_(4)+ .^(6)C_(5) xx .^(84)C_(5) + .^(6)C_(4) xx .^(84)C_(6)+ .^(6)C_(3) xx .^(84)C_(7) + .^(6)C_(2) xx .^(84)C_(8)+ .^(6)C_(1)xx.^(84)C_(9) + .^(6)C_(0) xx.^(84)C_(10)`
`=` Coefficient of `x^(10)` in `(1+x)^(6)(1+x)^(84)`
`=` Coefficient of `x^(10)` in `(1+x)^(90)`
`= .^(90)C_(10)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.8|10 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Single)|90 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.6|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Find the value of .^(20)C_(0) xx .^(13)C_(10) - .^(20)C_(1) xx .^(12)C_(9) + .^(20)C_(2) xx .^(11)C_(8) - "……" + .^(20)C_(10) .

Find the sum of the series ^15 C_0+^(15)C_1+^(15)C_2++^(15)C_7dot

The value of .^(40)C_(0) xx .^(100)C_(40) - .^(40)C_(1) xx .^(99)C_(40) + .^(40)C_(2) xx .^(98)C_(40) "……." + .^(40)C_(40) xx .^(60)C_(40) is equal to "____" .

The sum 2 xx .^(40)C_(2) + 6 xx .^(40)C_(3) + 12 xx .^(40)C_(4) + 20 xx .^(40)C_(5) + "…." + 1560 xx .^(40)C_(40) is divisible by

Prove that .^(15)C_(3) + 2 xx .^(15)C_(4) + .^(15)C_(5) = .^(17)C_(5)

The value of .^(n)C_(0) xx .^(2n)C_(r) - .^(n)C_(1)xx.^(2n-2)C_(r)+.^(n)C_(2)xx.^(2n-4)C_(r)+"…." is equal to

Prove that .^(n)C_(0) +5 xx .^(n)C_(1) + 9 xx .^(n)C_(2) + "…." + (4n+1) xx .^(n)C_(n) = (2n+1) 2^(n) .

Prove that ""^(10)C_(2)+2xx^(10)C_(3)+^(10)C_(4)=^(12)C_(4)

Find the product of: (-9) xx (-8) xx (-7) xx (-6)

If a= .^(20)C_(0) + .^(20)C_(3) + .^(20)C_(6) + .^(20)C_(9) + "…..", b = .^(20)C_(1) + .^(20)C_(4) + .^(20)C_(7) + "……"' and c = .^(20)C_(2) + .^(20)C_(5) + .^(20)C_(8) + "…..", then Value of (a-b)^(2) + (b-c)^(2) + (c-a)^(2) is