Home
Class 12
MATHS
Prove that C0-2^2C1+3^2C2-4^2C3+...+(-1)...

Prove that `C_0-2^2C_1+3^2C_2-4^2C_3+...+(-1)^n(n+1)^2xxC_n=0w h e r eC_r=^n C_r` .

Text Solution

Verified by Experts

`S=C_(0)-2^(2)C_(1)+3^(2)C_(2)-"....."+(-1)^(n)(n+1)^(2)C_(n)`
`T_(r) = (-1)^(r)r^(2).^(n)C_(r)`
`= (-1)^(r)r(r^(n)C_(r))`
`= (-1)^(r)r(n^(n-1)C_(r-1))`
`=n(-1)^(r)((r-1)+1)(.^(n-1)C_(r-1))`
`=n(-1)^(r)((r-1).^(n-1)C_(r-1)+.^(n-1)C_(r-1))`
`= n(-1)^(r)((n-1)^(n-2)C_(r-2)+.^(n-1)C_(r-1))`
`= n(n-1).^(n-2)C_(r-2)(-1)^(r-2)-n^(n-1)C_(r-1)(-1)^(r-1)`
`rArr S = underset(r=0)overset(n)sumT_(r)`
`= n(n-1)(1-1)^(n-2)-n(1-1)^(n-1)`
`=0`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.8|10 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Single)|90 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.6|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

If n >2, then prove that C_1(a-1)-C_2xx(a-2)++(-1)^(n-1)C_n(a-n)=a ,w h e r eC_r=^n C_rdot

Find the sum 1xx2xxC_1+2xx3C_2+ +n(n+1)C_n ,w h e r eC_r=^n C_rdot

Given that C_1+2C_2x+3C_3x^2++2nC_(2n)x^(2n-1)=2n(1+x)^(2n-1), w h e r eC_r=(2n)!//[r !(2n-r)!]; r=0,1,2, ,2n , then prove that C1 2-2C2 2+3C3 2--2n C2n2=(-1)^nn C_ndot

Find the sum 1C_0+2C_1+3C_2++(n+1)C_n ,w h e r eC_r=^n C_rdot

Prove that (r+1)^n C_r-r^n C_r+(r-1)^n C_2-^n C_3++(-1)^r^n C_r = (-1)^r^(n-2)C_rdot

Prove that "^n C_0^(2n)C_n-^n C_1^(2n-1)C_n+^n C_2xx^(2n-2)C_n++(-1)^n^n C_n^n C_n=1.

Prove that .^(n)C_(0) - ^(n)C_(1) + .^(n)C_(2)- ^(n)C_(3) + "…" + (-1)^(r) + .^(n)C_(r) + "…" = (-1)^(r ) xx .^(n-1)C_(r ) .

Show that 4C_0 +4C_1 +4C_2 +.....+4C_n>(2^(4n))/(n^3),w h e r e^n C_r=n !//[r !(n-r)!]dot

Prove that ^n C_0 ^(2n)C_n- ^n C_1 ^(2n-2)C_n+ ^n C_2^(2n-4)C_n-=2^ndot