Home
Class 12
MATHS
Find the value of sumsum(1lt=i<jlt=n-1)(...

Find the value of `sumsum_(1lt=i

Text Solution

Verified by Experts

The correct Answer is:
`n^(2)((2^(2(n-1))-.^(2(n-1))C_(n-1))/(2))`

`S=underset(lleiltjlen-1)(sumsum)(i.^(n)C_(i))(j.^(n)C_(j))`
`=n^(2)underset(lleiltjlen-1)(sumsum).^(n-1)C_(i-1).^(n-1)C_(j-1)`
`= n^(2)((2^(2(n-1))-.^(2(n-1))C_(n-1))/(2))`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.8|10 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Single)|90 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.6|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Find the value of sumsum_(0lt=i

Find the value of sumsum_(1leilejlt=n-1)(ij)^n c_i^n"" c_jdot

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , then the value of (sumsum)_(0leiltjlen) (i/(""^(n)C_(i))+j/(""^(n)C_(j)))

If n ge3 and 1,alpha_1, alpha_2, alpha_3....alpha_(n-1) are the , nth roots of unity then find the value of sum_(1 le i lt j le (n-1)) (alpha_i alpha_j )

Find the sum sumsum_(0lt=ilt=jlt=n)^ nC_i^n C_j

Find the value of "cos"(2cos^(-1)x+sin^(-1)x) at x=1/5, where 0lt=pi and -pi/2lt=sin^(-1)xlt=pi/2dot

Find the value of i_(1)/I_(2) in figure if where R=10Omega

If I_K=int_1^e(lnx)^kdx(k in I^+)dx(k in I^+), then find the value of I_4dot